41 resultados para beta-adrenergic activity
Resumo:
Naphthoquinones have been extensively studied due to their activity as topoisomerase inhibitors. These enzymes are critical to DNA replication in cells. In addition, naphthoquinones have been shown to induce what are known as "reactive oxygen species" that can cause damage to cells. beta-Lapachone is a very important pyranaphthoquinone obtained from the heartwood of the lapacho tree, Tabebuia avellanedae Lorentz ex. Griseb. (Bignoniaceae), and other Tabebuia trees native to Central and South America and chemically from lapachol. beta-Lapachone has a diversity of useful biological activities against various cancer cell lines such as human ovarian and prostate tumors and, at lower doses is a radiosensitizer of several human cancer cell lines. It gives rise to a variety of effects in vitro including the inhibition or activation of topoisomerase I an II in a distinct manner from that of other topoisomerase inhibitors. This review intend to discuss some details of the mechanisms of quinone-induced cell damage and death, and we also summarize results of the literature indicating that b-Lapachone may take part in quinone-elicited apoptosis despite the fact that its mechanism of action in vivo and its targets are still unknown.
Resumo:
We report herein the synthesis of some beta-D-galactopyranosylamine and beta-lactosylamine amides and sulfonamides. The interactions of these compounds with lectins from the seeds of Erythrina cristagalli (LEC) and Ricinus communis (RCA120) were evaluated in a hemagglutination inhibitory activity assay. D-Galactose and lactose were used as reference compounds. The beta-lactosylamine amides and sulfonamides were nearly as active as lactose in inhibiting LEC mediated hemagglutination and were less active against RCA120 agglutinin. The beta-D-galactopyranosylamine amides and sulfonamides were, with one exception, considerably less active than D-galactose in the assay with both lectins.
Resumo:
The essential oils from leaves (sample A) and flowers (sample B) of Aeolanthus suaveolens Mart. ex Spreng were obtained by hydrodistillation and analyzed by GC, GC-MS, and chiral phase gas chromatography (CPGC). Six compounds have been identified from the essential oils, representing ca 94.3 and 93% of the oils corresponding to samples A and B, respectively. The major constituents of samples A and B essential oils were respectively, linalool (34.2%/34.9%), (-)-massoialactone (25.9%/17.0%) and (E)-beta-farnesene (25.4%/29.1%). The enantiomeric distribution of the monoterpene linalool was established by analysis on heptakis- (6-O-methyl-2,3-di-O-pentyl)-beta-cyclodextrin capillary column. The antimicrobial activity of the essential oil from leaves and isolated compounds was also evaluated.
Resumo:
We report herein the synthesis of aryl beta-N-acetylglucosaminides containing azido, amino and acetamido groups at C-6 as potential antimicrobial agents. It was expected that these compounds could interfere with the biosynthesis and/or biotransformation of N-acetylglucosamine in fungi and bacteria. None of the compounds showed antimicrobial activity against bacteria (Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), filamentous fungus (Aspergillus niger) and yeasts (Saccharomyces cerevisae, Candida albicans and Candida tropicallis), at the concentration of 1 mg/mL in agar diffusion assay.
Resumo:
This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.
Resumo:
The time-course changes of the responsiveness of glycogen breakdown to a- and ß-adrenergic agonists during insulin-induced hypoglycemia (IIH) were investigated. Blood glucose levels were decreased prior to the alteration in the hepatic responsiveness to adrenergic agonists. The activation of hepatic glucose production and glycogenolysis by phenylephrine (2 µM) and isoproterenol (20 µM) was decreased in IIH. The changes in the responsiveness of glycogen catabolism were first observed for isoproterenol and later for phenylephrine. Hepatic ß-adrenergic receptors showed a higher degree of adrenergic desensitization than did a-receptors. Liver glycogen synthase activity, glycogen content and the catabolic effect of dibutyryl cyclic AMP (the ß-receptor second messenger) were not affected by IIH.
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
The purpose of this study was to determine, through beta-carotene analysis, the provitamin A value of three vegetables leaves ("serralha", celery and mint), raw and submitted to two ways of cooking: boiling and microwave. Samples of "serralha" presented the better provitamin A value beyond the three leaves analyzed: 1, 373 RE/100g for raw samples. Except for mint, it was observed a significant lost of provitamin A due the two ways of cooking.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
Beetroot leaves (Beta vulgaris L.) are commonly cut off and discarded before using its bulb due to lack of knowledge of how to use them. Aiming at using these leaves, in the present study, in natura and dehydrated beetroot leaves were chemically characterized in terms of fatty acid composition, proximate composition, minerals, total phenolic compounds (TPC), and antioxidant activity by DPPH in different stages (60, 80, and 100 days) of development. The beetroot leaves showed significant levels of protein and lipids in all developmental stages, and all proximate composition nutrients decreased during these maturation stages; the highest content was observed at 60 days. The Fe content decreased during the developmental stages (from 342.75 to 246.30 mg.kg-1), while the content of K increased (from 13,367.64 to 20,784.90 mg.kg-1). With regard to to fatty acid composition, linolenic acid was present in the greatest quantity, and it increase up to 2.58 mg.g-1 (in natura) and 40.11 mg.g-1 (dehydrated) at 100 days of development. The n-6/n-3 ratios were low in all stages. The TPC and antioxidant activity by DPPH changed during the developmental stages. The TPC was highest in the 100-day dehydrated leaves (15.27±0.12 mg GAE.g-1 FW), and the 50% inhibition of DPPH (IC50 89.52 µg.mL-1) were better in the 60-day in natura leaves. This study shows that all developmental stages produced satisfactory results, and therefore, these leaves can be reused as food. The antioxidant activity and the chemical constituents, mainly the ω-3fatty acid, increased during the stages of development.
Resumo:
The Brazilian Savannah, known as "Cerrado," has an extensive biodiversity, but it is under explored. Among the native vegetables is the jatobá-do-cerrado (Hymenaea stigonocarpa Mart.), a legume with great potential for exploration for its content of dietary fiber. Legumes are an important source of nutrient compounds, such as phenolic compounds and vitamins that have antioxidant properties. This study aimed at determining the chemical composition and antioxidant activity of the jatobá flour. The jatobá flour showed high fiber content (insoluble and soluble fiber 47.8 and 12.8 g.100 g- 1, respectively), significant amounts of carotenoids such as beta-carotene and lutein, and some minerals such as calcium: 145 mg.100 g- 1, magnesium: 125 mg.100 g- 1, and potassium: 1352 mg.100 g- 1. The jatobá flour extracted with different solvents (water, methanol, and acetone) exhibited antioxidant activity by the DPPH, FRAP, and ORAC methods. The solvent used in the extraction affected the total phenolic content and antioxidant activity. Acetone extraction produced the best results. Therefore, the jatobá flour is an ingredient that can be used to develop new products with properties that promote health.