36 resultados para ayers of formal neurons, separability principles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In molluscs, the number of peripheral neurons far exceeds those found in the central nervous system. Although previous studies on the morphology of the peripheral nervous system exist, details of its organization remain unknown. Moreover, the foot of the terrestrial species has been studied less than that of the aquatic species. As this knowledge is essential for our experimental model, the pulmonate gastropod Megalobulimus oblongus, the aim of the present study was to investigate monoamines in the pedal plexus of this snail using two procedures: glyoxylic acid histofluorescence to identify monoaminergic structures, and the unlabeled antibody peroxidase anti-peroxidase method using antiserum to detect the serotonergic component of the plexus. Adult land snails weighing 48-80 g, obtained from the counties of Barra do Ribeiro and Charqueadas (RS, Brazil), were utilized. Monoaminergic fibers were detected throughout the pedal musculature. Blue fluorescence (catecholamines, probably dopamine) was observed in nerve branches, pedal and subepithelial plexuses, and in the pedal muscle cells. Yellow fluorescence (serotonin) was only observed in thick nerves and in muscle cells. However, when immunohistochemical methods were used, serotonergic fibers were detected in the pedal nerve branches, the pedal and subepithelial plexuses, the basal and lateral zones of the ventral integument epithelial cells, in the pedal ganglion neurons and beneath the ventral epithelium. These findings suggest catecholaminergic and serotonergic involvement in locomotion and modulation of both the pedal ganglion interneurons and sensory information. Knowledge of monoaminergic distribution in this snail´s foot is important for understanding the pharmacological control of reflexive responses and locomotive behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dorsal (DRN) and median (MRN) raphe nuclei are important sources of serotonergic innervation to the forebrain, projecting to sites involved in cardiovascular regulation. These nuclei have been mapped using electrical stimulation, which has the limitation of stimulating fibers of passage. The present study maps these areas with chemical stimulation, investigating their influence on cardiorespiratory parameters. Urethane-anesthetized (1.2 g/kg, iv) male Wistar rats (280-300 g) were instrumented for pulsatile and mean blood pressure (MBP), heart rate, renal nerve activity, and respiratory frequency recordings. Microinjections of L-glutamate (0.18 M, 50-100 nl with 1% Pontamine Sky Blue) were performed within the DRN or the MRN with glass micropipettes. At the end of the experiments the sites of microinjection were identified. The majority of sites within the MRN (86.1%) and DRN (85.4%) evoked pressor responses when stimulated (DRN: deltaMBP = +14.7 ± 1.2; MRN: deltaMBP = +13.6 ± 1.3 mmHg). The changes in renal nerve activity and respiratory rate caused by L-glutamate were +45 ± 11 and +42 ± 9% (DRN; P < 0.05%), +40 ± 10 and +29 ± 7% (MRN, P < 0.05), respectively. No significant changes were observed in saline-microinjected animals. This study shows that: a) the blood pressure increases previously observed by electrical stimulation within the raphe are due to activation of local neurons, b) this pressor effect is due to sympathoexcitation because the stimulation increased renal sympathetic activity but did not produce tachycardia, and c) the stimulation of cell bodies in these nuclei also increases the respiratory rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graduate programs provide the highest level of formal education and thus are crucial for the development of any country. However, official Brazilian data clearly show a dramatic decrease in the number and values of scholarships available to graduate programs in Brazil over the last few years, despite the importance and growth of such programs. Between 1995 and 2004, investment by the Coordenadoria de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, subordinate to the Ministry of Education and Culture) in funding scholarships, corrected for inflation in the period, actually decreased by 51%. In addition, during the period between 1994 and 2004, there was a loss of about 60% in the purchasing power of the graduate scholarships provided by CAPES and the National Council for Science and Technology (CNPq). To reverse this trend, we propose the development of sectorial funding for Brazilian graduate programs to guarantee the availability and continuity of financial support for this strategic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the ventrolateral medulla contains neurons involved in the tonic and reflex control of the cardiovascular system. Two regions within the ventrolateral medulla were initially identified: the rostral ventrolateral medulla (RVLM) and the caudal ventrolateral medulla (CVLM). Activation of the RVLM raises arterial blood pressure and sympathetic nerve activity, and activation of the CVLM causes opposite effects. The RVLM premotor neurons project directly to sympathetic preganglionic neurons and are involved in the maintenance of resting sympathetic vasomotor tone. A significant proportion of tonic activity in the RVLM sympathetic premotor neurons is driven by neurons located in a third region of the ventrolateral medulla denominated caudal pressor area (CPA). The CPA is a pressor region located at the extreme caudal part of the ventrolateral medulla that appears to have an important role controlling the activity of RVLM neurons. In this brief review, we will address the importance of the ventrolateral medulla neurons for the generation of resting sympathetic tone related to arterial blood pressure control focusing on two regions, the RVLM and the CPA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic ethanol consumption can produce learning and memory deficits. Brain-derived neurotrophic factor (BDNF) and its receptors affect the pathogenesis of alcoholism. In this study, we examined the expression of BDNF, tropomyosin receptor kinase B (TrkB) and p75 neurotrophin receptor (p75NTR) in the hippocampus of a dog model of chronic alcoholism and abstinence. Twenty domestic dogs (9-10 months old, 15-20 kg; 10 males and 10 females) were obtained from Harbin Medical University. A stable alcoholism model was established through ad libitum feeding, and anti-alcohol drug treatment (Zhong Yao Jie Jiu Ling, the main ingredient was the stems of watermelon; developed in our laboratory), at low- and high-doses, was carried out. The Zhong Yao Jie Jiu Ling was effective for the alcoholism in dogs. The morphology of hippocampal neurons was evaluated using hematoxylin-eosin staining. The number and morphological features of BDNF, TrkB and p75NTR-positive neurons in the dentate gyrus (DG), and the CA1, CA3 and CA4 regions of the hippocampus were observed using immunohistochemistry. One-way ANOVA was used to determine differences in BDNF, TrkB and p75NTR expression. BDNF, TrkB and p75NTR-positive cells were mainly localized in the granular cell layer of the DG and in the pyramidal cell layer of the CA1, CA3 and CA4 regions (DG>CA1>CA3>CA4). Expression levels of both BDNF and TrkB were decreased in chronic alcoholism, and increased after abstinence. The CA4 region appeared to show the greatest differences. Changes in p75NTR expression were the opposite of those of BDNF and TrkB, with the greatest differences observed in the DG and CA4 regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.