64 resultados para automated resource discovery
Resumo:
The development of palaeoparasitology in Japan has occurred in recent decades. Despite the fact that archaeology in Japan has been slow to develop techniques for excavating ancient toilets, important information about the development of sanitation has been derived from the analysis of a few sites. This shows that the earliest people had very simple methods of sanitation. As populations increased, sanitation became more complex. Ditches surrounding early towns were used for excrement disposal. Eventually distinct toilets were developed followed by cesspit type toilets and flushing toilets. The parasites recovered from these toilets include many species that infect humans today. These parasite spectra reflect local use of aquatic, marine, and land animals. Fecal borne disease was an increasing problem as represented by whipworm and ascarid roundworm eggs. Interestingly, ascarid roundworms were absent in the earliest cultures and only became common with rice agriculture. Finds of pollen and seeds in toilet sediments reveal the use of medicinal plants to control the emerging problem of parasites.
Resumo:
Coagulase-negative staphylococci (CoNS) are an important cause of nosocomial bacteremia, specially in patients with indwelling devices or those submitted to invasive medical procedures. The identification of species and the accurate and rapid detection of methicillin resistance are directly dependent on the quality of the identification and susceptibility tests used, either manual or automated. The objective of this study was to evaluate the accuracy of two automated systems MicroScan and Vitek - in the identification of CoNS species and determination of susceptibility to methicillin, considering as gold standard the biochemical tests and the characterization of the mecA gene by polymerase chain reaction, respectively. MicroScan presented better results in the identification of CoNS species (accuracy of 96.8 vs 78.8%, respectively); isolates from the following species had no precise identification: Staphylococcus haemolyticus, S. simulans, and S. capitis. Both systems were similar in the characterization of methicillin resistance. The higher discrepancies for gene mec detection were observed among species other than S. epidermidis (S. hominis, S. saprophyticus, S. sciuri, S. haemolyticus, S. warneri, S. cohnii), and those with borderline MICs.
Resumo:
To provide a novel resource for analysis of the genome of Biomphalaria glabrata, members of the international Biomphalaria glabrata Genome Initiative (biology.unm.edu/biomphalaria-genome.html), working with the Arizona Genomics Institute (AGI) and supported by the National Human Genome Research Institute (NHGRI), produced a high quality bacterial artificial chromosome (BAC) library. The BB02 strain B. glabrata, a field isolate (Belo Horizonte, Minas Gerais, Brasil) that is susceptible to several strains of Schistosoma mansoni, was selfed for two generations to reduce haplotype diversity in the offspring. High molecular weight DNA was isolated from ovotestes of 40 snails, partially digested with HindIII, and ligated into pAGIBAC1 vector. The resulting B. glabrata BAC library (BG_BBa) consists of 61824 clones (136.3 kb average insert size) and provides 9.05 × coverage of the 931 Mb genome. Probing with single/low copy number genes from B. glabrata and fingerprinting of selected BAC clones indicated that the BAC library sufficiently represents the gene complement. BAC end sequence data (514 reads, 299860 nt) indicated that the genome of B. glabrata contains ~ 63% AT, and disclosed several novel genes, transposable elements, and groups of high frequency sequence elements. This BG_BBa BAC library, available from AGI at cost to the research community, gains in relevance because BB02 strain B. glabrata is targeted whole genome sequencing by NHGRI.
Resumo:
Concerns have been raised that universal availability of antiretroviral agents in resource-limited settings might lead to the emergence and spread of resistant strains. We present the largest survey on human immunodeficiency virus type 1 (HIV-1) resistance among treatment-naïve and experienced patients followed in small, relatively underprivileged cities in Brazil with universal availability to standard of care antiretroviral combinations. Samples were collected between 2004 and 2006 from 95 patients followed in the cities of Saquarema and Santo Antonio de Pádua, state of Rio de Janeiro. A proviral fragment encompassing protease and reverse transcriptase (RT) regions was generated and drug susceptibility level was inferred. Among 50 strains from drug-naïve subjects, one (2%) had intermediate-level resistance to RT inhibitors. Among 38 patients on therapy as of sampling, 28 (73.7%) had plasma viral load (PVL) below detection limit (26 of whom without evidence of resistance mutations) and 11 (28.9%) harbored strains with reduced susceptibility. Only two strains harbored both protease and RT inhibitor mutations. Among seven patients who were off-treatment as of sampling, two (28.5%) harbored strains with reduced susceptibility to RT inhibitors. The relatively high frequency of undetectable PVL among patients on treatment and the overall low prevalence of resistance-associated mutations are reassuring. Continued surveillance, however, is necessary.
Resumo:
In 2008, we have celebrated the centenary of the discovery of Toxoplasma gondii.Although this ubiquitous protozoan can generate devastating damage in foetuses and newborns, its treatment is the only field in which we have made little progress, despite a huge body of research, and has not yet been validated. Pregnant women who seroconvert are generally given spiramycine in order to reduce the risk of vertical transmission. However, to date, we have no evidence of the efficacy of this treatment because no randomized controlled trials have as yet been conducted. When foetal contamination is demonstrated, pyrimethamine, in association with sulfadoxine or sulfadiazine, is normally prescribed, but the effectiveness of this treatment remains to be shown. With regard to postnatal treatment, opinions vary considerably in terms of drugs, regimens and length of therapy. Similarly, we do not have clear evidence to support routine antibiotic treatment of acute ocular toxoplasmosis. We must be aware that pregnant women and newborns are currently being given empirically potentially toxic drugs that have no proven benefit. We must make progress in this field through well-designed collaborative studies and by drawing the attention of policy makers to this disastrous and unsustainable situation.
Resumo:
The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.
Resumo:
Chagas disease originated millions of years ago as an enzootic infection of wild animals and began to be transmitted to humans as an anthropozoonosis when man invaded wild ecotopes. While evidence of human infection has been found in mummies up to 9,000 years old, endemic Chagas disease became established as a zoonosis only in the last 200-300 years, as triatomines adapted to domestic environments. It is estimated that 15-16 million people are infected with Trypanosoma cruzi in Latin America, and 75-90 million are exposed to infection. Control of Chagas disease must be undertaken by interrupting its transmission by vectors and blood transfusions, improving housing and areas surrounding dwellings, providing sanitation education for exposed populations and treating acute and recently infected chronic cases. These measures should be complemented by surveillance and primary, secondary and tertiary care.
Resumo:
One hundred years ago, Carlos Chagas discovered a new disease, the American trypanosomiasis. Chagas and co-workers later characterised the disease's common manifestation, chronic cardiomyopathy, and suggested that parasitic persistence coupled with inflammation was the key underlying pathogenic mechanism. Better comprehension of the molecular mechanisms leading to clinical heart afflictions is a prerequisite to developing new therapies that ameliorate inflammation and improve heart function without hampering parasite control. Here, we review recent data showing that distinct cell adhesion molecules, chemokines and chemokine receptors participate in anti-parasite immunity and/or detrimental leukocyte trafficking to the heart. Moreover, we offer evidence that CC-chemokine receptors may be attractive therapeutic targets aiming to regain homeostatic balance in parasite/host interaction thereby improving prognosis, supporting that it is becoming a non-phantasious proposal.
Resumo:
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Resumo:
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Resumo:
This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.
Resumo:
This article aims to verify the factors associated with the development of human resource management (HRM) competences in foreign subsidiaries of Brazilian multinationals. These competences are essential in that they allow foreign units to adopt HRM practices that are consistent with the countries or markets in which they operate. A multilevel research was conducted, involving headquarters and subsidiaries of major Brazilian companies; the empirical analysis employed hierarchical linear modelling. Despite the recurrent debate on global standardisation versus local adaptation, it was identified that the integration of international HRM policies (addressing simultaneously global guidelines and local response) may stimulate competences development. In addition, interaction in external networks in the host country may enhance the development of HRM competences in the subsidiaries. However, specific cultural factors of the company may inhibit development activity in units abroad.