65 resultados para asymmetric electrosynthesis
Resumo:
The approaches in asymmetric synthesis as the chiron approach, chiral auxiliaries, chiral reagents and asymmetric catalysis are described in a simplified way.
Resumo:
This article summarizes how chiral 2-oxazolines have been employed as inducers of asymmetry in many kinds of organic reactions, including the more recent examples reported in which chiral bis(oxazolines) have been complexed in situ with transition metals and utilized to induce the stereoselectivity of some reactions.
Resumo:
This paper presents the design of a simple apparatus that periodically switches off both working and auxiliary electrodes short-circuiting them for a couple of seconds. Depolarization takes place and the initial current is re-established.
Resumo:
Since its discovery, phase transfer catalysis (PTC) has grown considerably and nowadays is one of the most versatile preparative methods. The search for new catalysts, their use in PTC asymmetric synthesis and the attempts to understand their mechanistic role are modern and exciting topics of investigation. A review on main achievements in the last two decades is presented.
Resumo:
This paper presents some results that may be used as previous considerations to a hydrogen peroxide electrogeneration process design. A kinetic study of oxygen dissolution in aqueous solution is carried out and rate constants for oxygen dissolution are calculated. Voltammetric experiments on vitreous carbon cathode shown that the low saturation concentration drives the oxygen reduction process to a mass transfer controlled process which exhibits low values of limiting currents. Results have shown that the hydrogen peroxide formation and its decomposition to water are separated by 400 mV on the vitreous carbon surface. Diffusion coefficients for oxygen and hydrogen peroxide are calculated using data taken from Levich and Tafel plots. In a series of bulk electrolysis experiments hydrogen peroxide was electrogenerated at several potential values, and concentration profiles as a function of the electrical charged passed were obtained. Data shown that, since limiting current plateaus are poorly defined onto reticulated vitreous carbon, cathodic efficiency may be a good criterion for choosing the potential value in which hydrogen peroxide electrogeneration should be carried out.
Resumo:
The importance of chiral alcohols as starting materials for the production of fine chemicals and as useful chirons for the building of several interesting molecules or natural products is reported. The useful and common methods of asymmetric reduction such as the chemical (with organoboron or organoaluminum reagents) and the catalytic ones (with ruthenium or rhodium complexes) for preparation of chiral alcohols are described; even the newer and much more rare electrocatalytic methods are reported.
Resumo:
The optimization of ferrate(VI) ion generation has been studied due to its favorable characteristics for application in several fields, including environmental quality control. The paper presents the best conditions for electrolytic generation of ferrate(VI) in alkaline media. An appropriate electrolyte was NaOH, 10 mol/L. Circulation of the electrolyte solution was important to avoid acidification close to the anode surface. An anode pre-cleaning with 10% HCl was more efficient than a cathodic pre-polarization. Among the distinct anode materials tested, pig iron showed the best performance, allowing up to 20 g/L of Na2FeO4, in 10 mol/L NaOH solution to be obtained, after 7 h of reactor operation, which is a concentration higher than those found in literature for alternative processes.
Resumo:
This review describes the use of catalytic asymmetric aldol reactions of silyl enol ethers and silyl (thio)ketene acetals with aldehydes (the Mukaiyama aldol reaction) in order to illustrate its synthetic utility. A variety of Lewis acid and basic reagents were employed for catalytic aldol reactions with high diastereo- and enantioselectivities. The origins of the selectivity of these reactions are discussed and some representative examples of their application in the synthesis of natural products are presented. New developments in chiral heterobimettalic lanthanoid catalysis and enantioselective aldol reactions in aqueous media are also included.
Resumo:
The asymmetric Michael addition reactions using chiral imines, under neutral conditions (deracemizing alkylation process), constitute one of the main methods for the stereocontrolled elaboration of quaternary carbon centers. This protocol is based on the conjugate addition of secondary chiral enamines to electron-deficient alkenes. The focus of this report deals with the discussion of regio- and stereochemical aspects of the deracemizing alkylation process concerning enamines bearing a resident chiral center.
Resumo:
The goal of this work is to show the use of undoped nanodiamond films as a new material for electrochemical and aerospace applications. Correlation between the applications and physico-chemical features of nano and conventional CVD polycrystalline diamond films are presented. An important and innovative application of these nanodiamonds is organic electrosynthesis, including pharmaceutical and water disinfection products, as well as electroanalytical applications, for example, development of biosensors for detection of glucose, glutamate and dopamine. In aeronautics and space developments, these nanodiamonds could be used as electrodes in rechargable batteries and in tribological investigations.
Resumo:
The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA) and crotylation (ECC) of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.
Resumo:
The Croatian chemist Vladimir Prelog shared in 1975 the Nobel Prize in chemistry with J. W. Cornforth for his research into the stereochemistry of organic molecules and reactions. His studies gave new horizons to the comprehension of steric effects on the reactivity of medium-sized rings, to conformational analysis and to the stereospecificity associated to asymmetric syntheses. Prelog made important contributions to enzyme chemistry and to the structure elucidation of alkaloids and of antibiotics from microorganisms, but probably his most famous work is the CIP system for assigning the stereochemistry of chiral centers.
Resumo:
The main methodologies in the asymmetric cyclopropanation of alkenes with emphasis on asymmetric catalysis are covered. Exemples are the Simmons-Smith reaction, the use of diazoalkanes and reactions carried out by decomposition of alpha-diazoesters in the presence of transition metals.
Resumo:
This study describes the use of three (-)-alpha-pinene derivatives, one diol-1,2 [(-)-(1R, 2R, 3S, 5R)-2,6,6-trimethylbicyclo[3.1.1]heptane-2,3-diol 4] and two piridine-hydroxy derivatives [(+)-(1R,2S,3R,5S)-2,6,6-trimethyl-3-(2-pyridinylmethyl)bicyclo[3.1.1]heptan-3-ol 7 and (-)-(1R,2S,3R,5S)-2,6,6-trimethyl-3-[2-(2-pyridinyl) ethyl]bicyclo[3.1.1]heptan-3-ol 8]; one diol-1,3 [(-)-(1S,2R,5S)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 5] derived from (+)-isopulegol 2 and one diol-1,3 [(+)-(1R,2R,5R)-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanol 6] derived from (+)-neo-isopulegol 3, as ligands in the asymmetric Reformatsky reaction. The best enantiomeric excess of beta-hydroxy ester obtained in the Reformatsky asymmetric reaction was 18% using ligand 6, and the chemical yield of the reactions was 65% on average.
Resumo:
The stereoselective addition of the titanium (IV) enolates derived from (S)-4-isopropyl-N-4-chlorobutyryl-1,3-thiazolidine-2-thione (8) and from (S)-4-isopropyl-N-4-chloropentanoyl-1,3-thiazolidine-2-thione (9) to N-Boc-2-methoxypyrrolidine (5b) afforded the addition products (+)-10 and (+)-11 in 84% yield in both cases, as 8.6:1 and 10:1 diastereoisomeric mixtures, respectively. A three-step sequence allowed to convert these adducts to (+)-isoretronecanol (1) and (+)-5-epi-tashiromine (2) in 43% and 49% overall yield, respectively.