111 resultados para ambient levels of PM2.5
Resumo:
Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG) are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994) 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980) 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.
Resumo:
Schistosoma mansoni causes liver disease by inducing granulomatous inflammation. This favors formation of reactive oxygen species, including superoxide ions, hydrogen peroxide and hydroxyl radicals all of which may induce lipid peroxidation. We have evaluated lipid peroxidation in 18 patients with hepatosplenic schistosomiasis mansoni previously treated with oxamniquine followed by splenectomy, ligature of the left gastric vein and auto-implantation of spleen tissue, by measuring levels of erythrocyte-conjugated dienes and plasma malondialdehyde (MDA). Age-matched, healthy individuals (N = 18) formed the control group. Erythrocyte-conjugated dienes were extracted with dichloromethane/methanol and quantified by UV spectrophotometry, while plasma MDA was measured by reaction with thiobarbituric acid. Patient erythrocytes contained two times more conjugated dienes than control cells (584.5 ± 67.8 vs 271.7 ± 20.1 µmol/l, P < 0.001), whereas the increase in plasma MDA concentration (about 10%) was not statistically significant. These elevated conjugated dienes in patients infected by S. mansoni suggest increased lipid peroxidation in cell membranes, although this was not evident when a common marker of oxidative stress, plasma MDA, was measured. Nevertheless, these two markers of lipid peroxidation, circulating MDA and erythrocyte-conjugated dienes, correlated significantly in both patient (r = 0.62; P < 0.01) and control (r = 0.57; P < 0.05) groups. Our data show that patients with schistosomiasis have abnormal lipid peroxidation, with elevated erythrocyte-conjugated dienes implying dysfunctional cell membranes, and also imply that this may be attenuated by the redox capacity of antioxidant agents, which prevent accumulation of plasma MDA.
Resumo:
Atherosclerosis is a major complication of chronic renal failure. Microinflammation is involved in atherogenesis and is associated with uremia and dialysis. The role of dialysate water contamination in inducing inflammation has been debated. Our aim was to study inflammatory markers in patients on chronic dialysis, before and 3 to 6 months after switching the water purification system from deionization to reverse osmosis. Patients had demographic, clinical and nutritional information collected and blood drawn for determination of albumin, ferritin, C-reactive protein (CRP), interleukin-6, and tumor necrosis factor-alpha in both situations. Acceptable levels of water purity were less than 200 colony-forming units of bacteria and less than 1 ng/ml of endotoxin. Sixteen patients died. They had higher median CRP (26.6 vs 11.2 mg/dl, P = 0.007) and lower median albumin levels (3.1 vs 3.9 g/l, P < 0.05) compared to the 31 survivors. Eight patients were excluded because of obvious inflammatory conditions. From the 23 remaining patients (mean age ± SD: 51.3 ± 13.9 years), 18 had a decrease in CRP after the water treatment system was changed. Overall, median CRP was lower with reverse osmosis than with deionization (13.2 vs 4.5 mg/l, P = 0.022, N = 23). There was no difference in albumin, cytokines, subjective global evaluation, or clinical and biochemical parameters. In conclusion, uremic patients presented a clinically significant reduction in CRP levels when dialysate water purification system switched from deionization to reverse osmosis. It is possible that better water treatments induce less inflammation and eventually less atherosclerosis in hemodialysis patients.
Resumo:
Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.
Resumo:
The relationship between preeclampsia and the renin-angiotensin system (RAS) is poorly understood. Angiotensin I-converting enzyme (ACE) is a key RAS component and plays an important role in blood pressure homeostasis by generating angiotensin II (Ang II) and inactivating the vasodilator angiotensin-(1-7) (Ang-(1-7)). ACE (I/D) polymorphism is characterized by the insertion (I) or deletion (D) of a 287-bp fragment, leading to changes in ACE activity. In the present study, ACE (I/D) polymorphism was correlated with plasma Ang-(1-7) levels and several RAS components in both preeclamptic (N = 20) and normotensive pregnant women (N = 20). The percentage of the ACE DD genotype (60%) in the preeclamptic group was higher than that for the control group (35%); however, this percentage was not statistically significant (Fisher exact test = 2.86, d.f. = 2, P = 0.260). The highest plasma ACE activity was observed in the ACE DD preeclamptic women (58.1 ± 5.06 vs 27.6 ± 3.25 nmol Hip-His Leu-1 min-1 mL-1 in DD control patients; P = 0.0005). Plasma renin activity was markedly reduced in preeclampsia (0.81 ± 0.2 vs 3.43 ± 0.8 ng Ang I mL plasma-1 h-1 in DD normotensive patients; P = 0.0012). A reduced plasma level of Ang-(1-7) was also observed in preeclamptic women (15.6 ± 1.3 vs 22.7 ± 2.5 pg/mL in the DD control group; P = 0.0146). In contrast, plasma Ang II levels were unchanged in preeclamptic patients. The selective changes in the RAS described in the present study suggest that the ACE DD genotype may be used as a marker for susceptibility to preeclampsia.
Resumo:
Serum hormone levels were compared between captive and free-living maned wolves and seasonal variations of sex hormones were studied. Blood samples were collected from 16 male and 26 female adult animals from Brazilian zoos, and from 30 male and 24 female free-living adults to determine serum progesterone and testosterone by radioimmunoassay. Serum testosterone concentrations varied (P < 0.05) across seasons for 16 captive males, being higher in autumn (2184.7 ± 355.1 pg/mL) than in summer (1080.7 ± 205.4 pg/mL), winter (1270.1 ± 276.6 pg/mL) and spring (963.9 ± 248.1 pg/mL), although they did not differ between summer, winter and spring. Testosterone concentration of 30 free-living males differed (P < 0.05) between autumn (824.1 ± 512.2 pg/mL), winter (14.4 ± 8.0 pg/mL) and spring (151.9 ± 90.5 pg/mL). Comparison between captive and free-living animals showed no difference in autumn (P > 0.05). Sixteen captive males showed higher testosterone concentration during winter and spring compared with 30 free-living animals (P < 0.05). Progesterone concentration varied among seasons in 26 captive females (P < 0.05), being higher in autumn (15.3 ± 3.1 ng/mL) than in summer (6.6 ± 1.5 ng/mL), winter (5.3 ± 3.1 ng/mL) and spring (4.3 ± 0.7 ng/mL). Progesterone concentration of 24 free-living females varied between autumn (17.1 ± 6.0 ng/mL) and winter (1.7 ± 0.3 ng/mL) (P < 0.05), but we could not obtain data for spring or summer. No difference in progesterone levels was observed between captive and free-living females in autumn and winter.
Resumo:
Apolipoprotein CIII (apo-CIII) participates in the regulation of triglyceride-rich lipoprotein metabolism. Several polymorphic sites have been detected within and around the apo-CIII gene. Here, we examined the relationship between apo-CIII SstI polymorphism (CC, CG, GG genotypes) and plasma triglyceride (TG) levels in a group of 159 Japanese individuals living in Southern Brazil. The sample was divided into a group of Japanese descendants (N = 51) with high TG (HTG; >200 mg/dL) and a group of Japanese descendants (N = 108) with normal TG (NTG; <200 mg/dL). TG and total cholesterol levels were analyzed by an enzymatic method using the Labtest-Diagnostic kit and high- and low-density lipoproteins by a direct method using the Labtest-Diagnostic kit and DiaSys Diagnostic System International kit, respectively. A 428-bp sequence of apo-CIII gene was amplified using oligonucleotide primers 5' GGT GAC CGA TGG CTT CAG TTC CCT GA 3' and 5' CAG AAG GTG GAT AGA GCG CTG GCC T 3'. The PCR products were digested with a restriction endonuclease SstI. Rare G allele was highly prevalent in our study population (0.416) compared to Caucasians (0.00-0.11). G allele was almost two times more prevalent in the HTG group compared to the NTG group (P < 0.001). The genotype distribution was consistent with the Hardy-Weinberg equilibrium. There was a significant association between rare G allele and HTG in Japanese individuals living in Southern Brazil as indicated by one-way ANOVA, P < 0.05.
Resumo:
During pregnancy and protein restriction, changes in serum insulin and leptin levels, food intake and several metabolic parameters normally result in enhanced adiposity. We evaluated serum leptin and insulin levels and their correlations with some predictive obesity variables in Wistar rats (90 days), up to the 14th day of pregnancy: control non-pregnant (N = 5) and pregnant (N = 7) groups (control diet: 17% protein), and low-protein non-pregnant (N = 5) and pregnant (N = 6) groups (low-protein diet: 6%). Independent of the protein content of the diet, pregnancy increased total (F1,19 = 22.28, P < 0.001) and relative (F1,19 = 5.57, P < 0.03) food intake, the variation of weight (F1,19 = 49.79, P < 0.000) and final body weight (F1,19 = 19.52, P < 0.001), but glycemia (F1,19 = 9.02, P = 0.01) and the relative weight of gonadal adipose tissue (F1,19 = 17.11, P < 0.001) were decreased. Pregnancy (F1,19 = 18.13, P < 0.001) and low-protein diet (F1,19 = 20.35, P < 0.001) increased the absolute weight of brown adipose tissue. However, the relative weight of this tissue was increased only by protein restriction (F1,19 = 15.20, P < 0.001) and the relative lipid in carcass was decreased in low-protein groups (F1,19 = 4.34, P = 0.05). Serum insulin and leptin levels were similar among groups and did not correlate with food intake. However, there was a positive relationship between serum insulin levels and carcass fat depots in low-protein groups (r = 0.37, P < 0.05), while in pregnancy serum leptin correlated with weight of gonadal (r = 0.39, P < 0.02) and retroperitoneal (r = 0.41, P < 0.01) adipose tissues. Unexpectedly, protein restriction during 14 days of pregnancy did not alter the serum profile of adiposity signals and their effects on food intake and adiposity, probably due to the short term of exposure to low-protein diet.
Resumo:
The association of plasma interleukin-6 (IL-6) levels, muscle strength and functional capacity was investigated in a cross-sectional study of community-dwelling elderly women from Belo Horizonte, Brazil. Elderly people who present controlled chronic diseases with no negative impact on physical, psychosocial and mental functionality are considered to be community-dwelling. Psychological and social stress due to unsuccessfully aging can represent a risk for immune system disfunctions. IL-6 levels, isokinetic muscle strength of knee flexion/extension, and functional tests to determine time required to rise from a chair and gait velocity were measured in 57 participants (71.21 ± 7.38 years). Serum levels of IL-6 were measured in duplicate and were performed within one single assay (mouse monoclonal antibody against IL-6; High-Sensitivity, Quantikine®, R & D Systems, USA; intra-assay coefficient of variance = 6.9-7.4%; interassay coefficient of variance = 9.6-6.5%; sensitivity = 0.016-0.110 pg/mL; mean = 0.039 pg/mL). Muscle strength was assessed with the isokinetic dynamometer Biodex System 3 Pro®. After the Shapiro-Wilk normality test was applied, correlations were investigated using Spearman and Kruskal-Wallis tests. Post hoc analysis was performed using the Dunn test. A significant negative correlation was observed between plasma IL-6 levels (1.95 ± 1.77 pg/mL) and muscle strength for knee flexion (70.70 ± 21.14%; r = -0.265; P = 0.047) and extension (271.84 ± 67.85%; r = -0.315; P = 0.017). No significant correlation was observed between IL-6 levels and the functional tests (time to rise from a chair = 14.65 ± 2.82 s and gait velocity = 0.95 ± 0.14 m/s). These results suggest that IL-6 is associated with reduced muscle strength.
Resumo:
Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has been associated with cognitive, behavioral and motor dysfunctions, seizures and coma. The underlying mechanisms of CM are incompletely understood. Glutamate and other metabolites such as lactate have been implicated in its pathogenesis. In the present study, we investigated the involvement of glutamate in the behavioral symptoms of CM. Seventeen female C57BL/6 mice (20-25 g) aged 6-8 weeks were infected with P. berghei ANKA by the intraperitoneal route using a standardized inoculation of 10(6) parasitized red blood cells suspended in 0.2 mL PBS. Control animals (N = 17) received the same volume of PBS. Behavioral and neurological symptoms were analyzed by the SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment (SHIRPA) battery. Glutamate release was measured in the cerebral cortex and cerebrospinal fluid of infected and control mice by fluorimetric assay. All functional categories of the SHIRPA battery were significantly altered in the infected mice at 6 days post-infection (dpi) (P ≤ 0.05). In parallel to CM symptoms, we found a significant increase in glutamate levels in the cerebral cortex (mean ± SEM; control: 11.62 ± 0.90 nmol/mg protein; infected at 3 dpi: 10.36 ± 1.17 nmol/mg protein; infected at 6 dpi: 26.65 ± 0.73 nmol/mg protein; with EGTA, control: 5.60 ± 1.92 nmol/mg protein; infected at 3 dpi: 6.24 ± 1.87 nmol/mg protein; infected at 6 dpi: 14.14 ± 0.84 nmol/mg protein) and in the cerebrospinal fluid (control: 128 ± 51.23 pmol/mg protein; infected: 301.4 ± 22.52 pmol/mg protein) of infected mice (P ≤ 0.05). These findings suggest a role of glutamate in the central nervous system dysfunction found in CM.
Resumo:
The application of continuous positive airway pressure (CPAP) produces important hemodynamic alterations, which can influence breathing pattern (BP) and heart rate variability (HRV). The aim of this study was to evaluate the effects of different levels of CPAP on postoperative BP and HRV after coronary artery bypass grafting (CABG) surgery and the impact of CABG surgery on these variables. Eighteen patients undergoing CABG were evaluated postoperatively during spontaneous breathing (SB) and application of four levels of CPAP applied in random order: sham (3 cmH2O), 5 cmH2O, 8 cmH2O, and 12 cmH2O. HRV was analyzed in time and frequency domains and by nonlinear methods and BP was analyzed in different variables (breathing frequency, inspiratory tidal volume, inspiratory and expiratory time, total breath time, fractional inspiratory time, percent rib cage inspiratory contribution to tidal volume, phase relation during inspiration, phase relation during expiration). There was significant postoperative impairment in HRV and BP after CABG surgery compared to the preoperative period and improvement of DFAα1, DFAα2 and SD2 indexes, and ventilatory variables during postoperative CPAP application, with a greater effect when 8 and 12 cmH2O were applied. A positive correlation (P < 0.05 and r = 0.64; Spearman) was found between DFAα1 and inspiratory time to the delta of 12 cmH2O and SB of HRV and respiratory values. Acute application of CPAP was able to alter cardiac autonomic nervous system control and BP of patients undergoing CABG surgery and 8 and 12 cmH2O of CPAP provided the best performance of pulmonary and cardiac autonomic functions.
Resumo:
The objective of the present study was to determine if there is a relationship between serum levels of brain-derived neurotrophic factor (BDNF) and the number of T2/fluid-attenuated inversion recovery (T2/FLAIR) lesions in multiple sclerosis (MS). The use of magnetic resonance imaging (MRI) has revolutionized the study of MS. However, MRI has limitations and the use of other biomarkers such as BDNF may be useful for the clinical assessment and the study of the disease. Serum was obtained from 28 MS patients, 18-50 years old (median 38), 21 women, 0.5-10 years (median 5) of disease duration, EDSS 1-4 (median 1.5) and 28 healthy controls, 19-49 years old (median 33), 19 women. BDNF levels were measured by ELISA. T1, T2/FLAIR and gadolinium-enhanced lesions were measured by a trained radiologist. BDNF was reduced in MS patients (median [range] pg/mL; 1160 [352.6-2640]) compared to healthy controls (1640 [632.4-4268]; P = 0.03, Mann-Whitney test) and was negatively correlated (Spearman correlation test, r = -0.41; P = 0.02) with T2/FLAIR (11-81 lesions, median 42). We found that serum BDNF levels were inversely correlated with the number of T2/FLAIR lesions in patients with MS. BDNF may be a promising biomarker of MS.
Resumo:
The interaction between ghrelin and adiponectin is still controversial. We investigated the effect of cafeteria diet and pioglitazone on body weight, insulin resistance, and adiponectin/ghrelin levels in an experimental study on male Wistar rats. The animals were divided into four groups of 6 rats each, and received balanced chow with saline (CHOW-O) or pioglitazone (CHOW-P), or a cafeteria diet with saline (CAFE-O) or pioglitazone (CAFE-P). The chow/cafeteria diets were administered for 35 days, and saline/pioglitazone (10 mg·kg body weight-1·day-1) was added in the last 14 days prior to euthanasia. CAFE-O animals had a higher mean final weight (372.5 ± 21.01 g) than CHOW-O (317.66 ± 25.11 g, P = 0.017) and CHOW-P (322.66 ± 28.42 g, P = 0.035) animals. Serum adiponectin levels were significantly higher in CHOW-P (55.91 ± 20.62 ng/mL) than in CHOW-O (30.52 ± 6.97 ng/mL, P = 0.014) and CAFE-O (32.54 ± 9.03 ng/mL, P = 0.027) but not in CAFE-P. Higher total serum ghrelin levels were observed in CAFE-P compared to CHOW-P animals (1.65 ± 0.69 vs 0.65 ± 0.36 ng/mL, P = 0.006). Likewise, acylated ghrelin levels were higher in CAFE-P (471.52 ± 195.09 pg/mL) than in CHOW-P (193.01 ± 87.61 pg/mL, P = 0.009) and CAFE-O (259.44 ± 86.36 pg/mL, P = 0.047) animals. In conclusion, a cafeteria diet can lead to a significant weight gain. Although CAFE-P animals exhibited higher ghrelin levels, this was probably related to food deprivation rather than to a direct pharmacological effect, possibly attenuating the increase in adiponectin levels.
Resumo:
Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42), tegaserod (1 mg·kg-1·day-1, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.