42 resultados para accounting change
Resumo:
Adults and larvae of Triatoma infestans spend daylight hours assembled in shaded places. An assembling factor has been demonstrated in the excrement of this species. We analysed different aspects of the dynamics of the response of bugs. Recently fed insects do not aggregate around faeces. They start to show a significant assembling response from the 8th hour after feeding onwards. Just deposited faeces do not evoke assembling, but a significant rejection instead. This reaction switches 3 h after deposition, when the faeces become attractive to the insects. The attractiveness of faeces persists for about 10 days and can be recovered after this time by rehydration. These findings are discussed in relation to the biological role of faeces and the dynamics of the use of refuges by T. infestans.
Resumo:
The aim of this study was to investigate the influence of temperature on the development of Schistosoma mansoni infections in Biomphalaria glabrata. The snails were infected at 15, 20, and 30ºC, and the cercarial release was analyzed after 30 and 60 days post-infection. Our results showed that a decrease in the temperature has a substantial influence on the development of S. mansoni infection in B. glabrata, with significant differences (p < 0.05) between 15 and 30ºC. These data could provide a better understanding of the epidemiological aspects of schistosomiasis.
Resumo:
Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.
Resumo:
The effects of artemisinin-based combination therapies (ACTs) on transmission of Plasmodium falciparum were evaluated after a policy change instituting the use of ACTs in an endemic area. P. falciparum gametocyte carriage, sex ratios and inbreeding rates were examined in 2,585 children at presentation with acute falciparum malaria during a 10-year period from 2001-2010. Asexual parasite rates were also evaluated from 2003-2010 in 10,615 children before and after the policy change. Gametocyte carriage declined significantly from 12.4% in 2001 to 3.6% in 2010 (@@χ² for trend = 44.3, p < 0.0001), but sex ratios and inbreeding rates remained unchanged. Additionally, overall parasite rates remained unchanged before and after the policy change (47.2% vs. 45.4%), but these rates declined significantly from 2003-2010 (@@χ² for trend 35.4, p < 0.0001). Chloroquine (CQ) and artemether-lumefantrine (AL) were used as prototype drugs before and after the policy change, respectively. AL significantly shortened the duration of male gametocyte carriage in individual patients after treatment began compared with CQ (log rank statistic = 7.92, p = 0.005). ACTs reduced the rate of gametocyte carriage in children with acute falciparum infections at presentation and shortened the duration of male gametocyte carriage after treatment. However, parasite population sex ratios, inbreeding rates and overall parasite rate were unaffected.
Resumo:
Malaria is the most important public health problem in several countries. In Thailand, co-infections of Plasmodium vivax and Plasmodium falciparum are common. We examined the prevalence and patterns of mutations in P. vivax dihydrofolate reductase (Pvdhfr) and P. vivax dihydropteroate synthase (Pvdhps) in 103 blood samples collected from patients with P. vivax infection who had attended the malaria clinic in Mae Sot, Tak Province during 2009 and 2010. Using nested polymerase chain reaction-restriction fragment length polymorfism, we examined single nucleotide polymorphisms-haplotypes at amino acid positions 13, 33, 57, 58, 61, 117 and 173 of Pvdhfr and 383 and 553 of Pvdhps. All parasite isolates carried mutant Pvdhfr alleles, of which the most common alleles were triple mutants (99%). Eight different types of Pvdhfr and combination alleles were found, as follows: 57I/58R/117T, 57I/58R/117T, 57I/58R/117T/N, 57L/58R/117T, 57L/58R/117T, 58R/61M/117N, 58R/61M/117N and 13L/57L/58R/117T. The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). The most common Pvdhfr alleles were 57I/58R/117T (77.7%), 57I/58R/117T/N (1%), 57L/58R/117T (5.8%) and 58R/61M/117N (14.5%). Additionally, we recovered one isolate of a carrying a quadruple mutant allele, 13L/57L/58R/117T. The most prevalent Pvdhps allele was a single mutation in amino acid 383 (82.5%), followed by the wild-type A383/A553 (17.5%) allele. Results suggest that all P. vivax isolates in Thailand carry some combination of mutations in Pvdhfr and Pvdhps. Our findings demonstrate that development of new antifolate drugs effective against sulfadoxine-pyrimethamine-resistant P. vivax is required.
Resumo:
The 13C natural abundance technique was applied to study C dynamics after land-use change from native savanna to Brachiaria, Pinus, and Eucalyptus in differently textured Cerrado Oxisols. But due to differences in the d13C signatures of subsoils under native savanna and under introduced species, C substitution could only be calculated based on results of cultivated soils nearby. It was estimated that after 20 years, Pinus C had replaced only 5 % of the native C in the 0-1.2 m layer, in which substitution was restricted to the top 0.4 m. Conversely, after 12 years, Brachiaria had replaced 21 % of Cerrado C to a depth of 1.2 m, where substitution decreased only slightly throughout the entire profile. The high d13C values in the subsoils of the cultivated sites led to the hypothesis that the natural vegetation there had been grassland rather than Cerrado sensu stricto, in spite of the comparable soil and site characteristics and the proximity of the studied sites. The hypothesis was tested using aerial photographs of 1964, which showed that the cultivated sites were located on a desiccated runoff head. The vegetation shift to a grass-dominated savanna formation might therefore have occurred in response to waterlogging and reduced soil aeration. A simple model was developed thereof, which ascribes the different Cerrado formations mainly to the plant-available water content and soil aeration. Soil fertility is considered of minor significance only, since at the studied native savanna sites tree density was independent of soil texture or nutrient status.
Resumo:
The objective of this work was to assess the potential impact of climate change on the spatial distribution of coffee nematodes (races of Meloidogyne incognita) and leaf miner (Leucoptera coffeella), using a Geographic Information System. Assessment of the impacts of climate change on pest infestations and disease epidemics in crops is needed as a basis for revising management practices to minimize crop losses as climatic conditions shift. Future scenarios focused on the decades of the 2020's, 2050's, and 2080's (scenarios A2 and B2) were obtained from five General Circulation Models available on Data Distribution Centre from Intergovernmental Panel on Climate Change. Geographic distribution maps were prepared using models to predict the number of generations of the nematodes and leaf miner. Maps obtained in scenario A2 allowed prediction of an increased infestation of the nematode and of the pest, due to greater number of generations per month, than occurred under the climatological normal from 1961-1990. The number of generations also increased in the B2 scenario, but was lower than in the A2 scenario for both organisms.
Resumo:
The objective of this work was to simulate maize leaf development in climate change scenarios at Santa Maria, RS, Brazil, considering symmetric and asymmetric increases in air temperature. The model of Wang & Engel for leaf appearance rate (LAR), with genotype-specific coefficients for the maize variety BRS Missões, was used to simulate tip and expanded leaf accumulated number from emergence to flag leaf appearance and expansion, for nine emergence dates from August 15 to April 15. LAR model was run for each emergence date in 100-year climate scenarios: current climate, and +1, +2, +3, +4 and +5°C increase in mean air temperature, with symmetric and asymmetric increase in daily minimum and maximum air temperature. Maize crop failure due to frost decreased in elevated temperature scenarios, in the very early and very late emergence dates, indicating a lengthening in the maize growing season in warmer climates. The leaf development period in maize was shorter in elevated temperature scenarios, with greater shortening in asymmetric temperature increases, indicating that warmer nights accelerate vegetative development in maize.
Resumo:
The objective of this work was to evaluate a generalized response function to the atmospheric CO2 concentration [f(CO2)] by the radiation use efficiency (RUE) in rice. Experimental data on RUE at different CO2 concentrations were collected from rice trials performed in several locations around the world. RUE data were then normalized, so that all RUE at current CO2 concentration were equal to 1. The response function was obtained by fitting normalized RUE versus CO2 concentration to a Morgan-Mercer-Flodin (MMF) function, and by using Marquardt's method to estimate the model coefficients. Goodness of fit was measured by the standard deviation of the estimated coefficients, the coefficient of determination (R²), and the root mean square error (RMSE). The f(CO2) describes a nonlinear sigmoidal response of RUE in rice, in function of the atmospheric CO2 concentration, which has an ecophysiological background, and, therefore, renders a robust function that can be easily coupled to rice simulation models, besides covering the range of CO2 emissions for the next generation of climate scenarios for the 21st century.
Resumo:
The objective of this work was to evaluate the effect of the temperature increase forecasted by the Intergovernmental Panel on Climate Change (IPCC) on agricultural zoning of cotton production in Brazil. The Northeastern region showed the highest decrease in the low-risk area for cotton cultivation due to the projected temperature increase. This area in the Brazilian Northeast may decrease from 83 million ha in 2010 to approximately 71 million ha in 2040, which means 15% reduction in 30 years. Southeastern and Center-Western regions had small decrease in areas suitable for cotton production until 2040, while the Northern region showed no reduction in these areas. Temperature increase will not benefit cotton cultivation in Brazil because dimension of low-risk areas for economic cotton production may decrease.
Resumo:
The objective of this work was to analyze future scenarios for palisade grass yield subjected to climate change for the state of São Paulo, Brazil. An empirical crop model was used to estimate yields, according to growing degree-days adjusted by one drought attenuation factor. Climate data from 1963 to 2009 of 23 meteorological stations were used for current climate conditions. Downscaled outputs of two general circulation models were used to project future climate for the 2013-2040 and 2043-2070 periods, considering two contrasting scenarios of temperature and atmospheric CO2 concentration increase (high and low). Annual dry matter yield should be from 14 to 42% higher than the current one, depending on the evaluated scenario. Yield variation between seasons (seasonality) and years is expected to increase. The increase of dry matter accumulation will be higher in the rainy season than in the dry season, and this result is more evident for soils with low-water storage capacity. The results varied significantly between regions (<10% to >60%). Despite their higher climate potential, warmer regions will probably have a lower increase in future forage production.
Resumo:
This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs)/(Fm')], D = (1- Fv'/Fm') and ETR = (ΦPSII×PPF×0,84×0,5) were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm) were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.