83 resultados para Yb doped double clad fiber
Resumo:
The synthesis of layered double hydroxides (LDHs) by hydrothermal-LDH reconstruction and coprecipitation methods is reviewed using a thermodynamic approach. A mixture model was used for the estimation of the thermodynamics of formation of LDHs. The synthesis and solubility of LDHs are discussed in terms of standard molar Gibbs free energy change of reaction. Data for numerous divalent and trivalent metals as well as for some monovalent and tetravalent metals that may be part of the LDH structure have been compiled. Good agreement is found between theoretical and experimental data. Diagrams and tables for the prediction of possible new LDH materials are provided.
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
The product of catalytic activity of the enzyme phospholipase A2, which resembles the core unit of animal toxins, on phospholipids is a 1:1 mixture of lysolipid and fatty acid. This mixture was studied by time-resolved simultaneous small- and wide angle x-ray diffraction over the temperature range from 23 to 53.5ºC. An unusually large lamellar structure was observed, with d = 11 nm, contradicting the complex functional dimer model between lysolipid and fatty acid. It can be explained by formation of a "double-bilayer", a new phase consisting of two different bilayers, one formed by lysophospholipid and other by fatty acid, bound together by head group interactions. Its strucutre was confirmed by simulations of the X-ray scattering pattern.
Resumo:
Crystals of Mg/Al layered double hydroxide were synthesized by alkaline precipitation and treated in an aqueous solution of glutamic acid. The glutamate ions were not intercalated into the interlayer space, but were detected in the material by Fourier transform infrared spectroscopy, suggesting that only the external surfaces of crystals were modified with glutamate ions. The resulting hybrid material was tested as a support for immobilization of the enzyme laccase (Myceliophthora thermophila). The immobilized enzyme preparation was characterized by electronic paramagnetic resonance spectroscopy and by assays of catalytic activity. The activity of the immobilized laccase was 97% of the activity in the free enzyme. Layered double hydroxide is a suitable support for use in remediation of soil studies.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
A simple procedure is described for the determination of scopolamine by square-wave voltammetry using a cathodically pretreated boron-doped diamond electrode. Cyclic voltammetry studies indicate that the oxidation of scopolamine is irreversible at a peak potential of 1.59 V (vs. Ag/AgCl (3.0 mol L-1 KCl)) in a 0.50 mol L-1 sulfuric acid solution. Under optimized conditions, the analytical curve obtained was linear (r = 0.9996) for the scopolamine concentration range of 1.0 to 110 µmol L-1, with a detection limit of 0.84 µmol L-1. The method was successfully applied to the determination of scopolamine in pharmaceutical formulations with minimum sample preparation.
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
ZnO is a semiconductor material largely employed in the development of several electronic and optical devices due to its unique electronic, optical, piezo-, ferroelectric and structural properties. This study evaluates the properties of Ba-doped wurtzite-ZnO using quantum mechanical simulations based on the Density Functional Theory (DFT) allied to hybrid functional B3LYP. The Ba-doping caused increase in lattice parameters and slight distortions at the unit cell angle in a wurtzite structure. In addition, the doping process presented decrease in the band-gap (Eg) at low percentages suggesting band-gap engineering. For low doping amounts, the wavelength characteristic was observed in the visible range; whereas, for middle and high doping amounts, the wavelength belongs to the Ultraviolet range. The Ba atoms also influence the ferroelectric property, which is improved linearly with the doping amount, except for doping at 100% or wurtzite-BaO. The ferroelectric results indicate the ZnO:Ba is an strong option to replace perovskite materials in ferroelectric and flash-type memory devices.
Resumo:
The tomato cv. Fukuju nº. 2 was used for studying the effect of single and double infections with Potato virus X (PVX) and Tobacco mosaic virus (TMV). Mixed infection resulted in a synergistic increase of disease severity, where more growth reduction was seen with simultaneous inoculations than with sequential inoculations at four-day intervals. At five and 12 days post-inoculation, the increased severity of the disease coincided with enhancement of virus accumulation in the rapidly expanding upper leaves. The PVX concentration in leaves nº 5 to 7 of doubly infected plants was three to six fold that of singly infected ones, as determined by DAS-ELISA. Mixed infection with the L strain led to higher enhancement of PVX than with the TMV-L11A strain. The concentration of TMV-L was lower in double infection and significantly higher than TMV-L11A in both singly and doubly infected plants. Analyses of the PVX ORF2 by Western blot and Northern hybridization revealed the pattern of accumulation of the 25 kDa protein and the RNAs, respectively, following those of the virion and coat protein. The strain TMV-L11A overcame the resistance gene in cv. GCR 237 (Tm-1). In the upper leaf nº. 8, the concentration of PVX was three times higher in plants with mixed infection than with L11A. The concentrations of the L and OM (TMV strains) in both singly and doubly infected plants were at very low levels, and the synergistic effect on PVX concentration and disease severity was not observed.
Resumo:
The dehydration kinetic of Yb, Lu and Y 4-chlorobenzylidenepyruvate was studied by using thermogravimetry and the kinetics parameters obtained by Flynn and Wall method suggest that the dehydration step follows a first order mechanism. The activation energies calculated were 103.6, 96.6 and 97.2 kJ/mol and the lifetime considering the temperature of 31 and 101 º C for the dehydration of these compounds were 23, 26, 31 minutes and 0.6, 1.3 and 1.4 seconds, respectively. The results have similar values and suggest that the water is attached in the same way.
Resumo:
The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.
Resumo:
Zorflex® activated carbon fibers (ACF), reference FM100 198B, are used before and after an oxidizing procedure with H3PO4 to study the adsorption of Pb2+. The point of zero charge was determined for the modified and unmodified fiber giving values of 2.3 and 4.3, respectively. After oxidizing the ACF, the fiber showed to have a greater Pb2+ adsorption capacity in comparison with the unmodified fiber, which is related with the acid sites increase, where lead was mainly adsorbed. Determination of the BET area was carried out by nitrogen physisorption at 77K. ACFs presented superficial areas between 1000 and 1500 m²/g showing mostly, a microporous structure. The preliminary design of an adsorbent using the modified fiber is presented where the fiber superior physicochemical properties over the unmodified one are observed.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the reinforcement of cement-based composites. The residues were treated with wet-dry cycles and evaluated using tensile testing of fibers, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Compatibility with the cement-based matrix was evaluated through the fiber pull-out test and flexural test in composites reinforced with 2 % of sisal residues. The results indicate that the use of treated residue allows the production of composites with good mechanical properties that are superior to the traditional composites reinforced with natural sisal fibers.
Resumo:
OBJECTIVE: To elucidate the role of the spleen and splenic allograft in lipid control and evaluate its effect on the lipid profile of rats.METHOD: 32 male Wistar rats were randomly assigned into four groups: control group (1), total splenectomy group (2), splenectomy and implantation of allograft group (3) and double spleen group (4). Each group was subdivided into two subgroups: A and B, based on the death of the animals after 30 or 120 days of monitoring. The procedures in groups 2, 3 and 4 were made simultaneously, and splenectomized animals, groups 2 and 3 were donors, respectively, for the animals of groups 3 and 4. In group 4 the spleen was preserved and the animals received implants from the spleens of rats from group 3. The regeneration of splenic tissue was evaluated by macroscopic and microscopic analyzes of the grafts and own spleens, as well as with measurements of VLDL, HDL, LDL, total cholesterol and triglycerides.RESULTS: after 120 days, Group 4 showed levels of total cholesterol and LDL lower than the other groups. Group 1 had higher levels of lipids.CONCLUSION: The technique of double spleen was effective in the control of lipid metabolism, corroborating the function of the spleen as a reserve of lipids.