100 resultados para Water retention curve
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.
Resumo:
Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.
Resumo:
The water absorbent polymer effect on vegetative growth and production of Theoretical Recovery Sugar (TRS) of sugarcane cv. RB 86 7515 was evaluated on two field tests installed in randomized blocks, with four treatments and five repetitions. The polymer doses were 0; 4; 8 and 12 g m-1 of furrow (test 1) and 0; 1.4; 2.8 and 4.2 g m-1 of furrow (test 2). Test 1 (dec/2007 to may/2009) was implanted in a Distroferric Red Argisol soil in Presidente Prudente - State of São Paulo (SP), Brazil; and the test 2 (Aug/2008 to Aug/2009) was implanted in a Red Yellow Argisol soil in Lucélia - State of São Paulo (SP), Brazil. In test 2, there were no significant differences for any evaluated parameters. In both tests the polymer doses equal to or less than 4 g m-1 of furrow showed no significant effect on the evaluated parameters. In test 1, the polymer doses of 8 and 12 g m-1 of the conditioning polymer increased the number of tillers in stage II of development and led to the largest amount of straw. The gross income per hectare has positive relation with the polymer doses. The polymer had no significant effect on the sugarcane stems productivity and technological parameters.
Resumo:
ABSTRACT The integration of fish farming in intensive system and plant production, called "aquaponics" is practiced successfully in countries like the USA, Australia and Europe. In Brazil, this integration has attracted the attention of researchers and producers. In this context, the aim of this study was to evaluate the effect of two substrates (crushed stone number 3, CS III and flexible polyurethane foam, FPF) on the production of aquaponic lettuce, moreover, to show that the residual water from intensive tilapia production provides sufficient qualitative characteristics for competitive production of lettuce without adding commercial fertilizers. The treatment in which FPF was used provided higher concentrations of macro and micronutrients in the shoots, higher production of fresh matter of shoots (95.48 g plant-1) and a larger number of leaves (14.90) relative to CS III. These results were attributed to the lower post-transplanting stress and the higher water retention time provided by the FPF. The residual water from tilapia intensive farming can provide sufficient nutrients for the production of lettuce, making the supplementary fertilization with commercial products unnecessary. Thus, the FPF presents the most suitable conditions to be used as substrate in aquaponics system with recirculation of the residual water from the intensive tilapia farming.
Resumo:
Obstructive apnea (OA) can exert significant effects on renal sympathetic nerve activity (RSNA) and hemodynamic parameters. The present study focuses on the modulatory actions of RSNA on OA-induced sodium and water retention. The experiments were performed in renal-denervated rats (D; N = 9), which were compared to sham (S; N = 9) rats. Mean arterial pressure (MAP) and heart rate (HR) were assessed via an intrafemoral catheter. A catheter was inserted into the bladder for urinary measurements. OA episodes were induced via occlusion of the catheter inserted into the trachea. After an equilibration period, OA was induced for 20 s every 2 min and the changes in urine, MAP, HR and RSNA were recorded. Renal denervation did not alter resting MAP (S: 113 ± 4 vs D: 115 ± 4 mmHg) or HR (S: 340 ± 12 vs D: 368 ± 11 bpm). An OA episode resulted in decreased HR and MAP in both groups, but D rats showed exacerbated hypotension and attenuated bradycardia (S: -12 ± 1 mmHg and -16 ± 2 bpm vs D: -16 ± 1 mmHg and 9 ± 2 bpm; P < 0.01). The basal urinary parameters did not change during or after OA in S rats. However, D rats showed significant increases both during and after OA. Renal sympathetic nerve activity in S rats increased (34 ± 9%) during apnea episodes. These results indicate that renal denervation induces elevations of sodium content and urine volume and alters bradycardia and hypotension patterns during total OA in unconscious rats.
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.
Resumo:
Hypoalbuminemia may cause interstitial edema and hemodilution, which we hypothesized may influence serum sodium levels. Our purpose was to compare serum sodium levels of hospitalized adults with or without hypoalbuminemia. All sodium and albumin serum levels of 142 adults hospitalized at general medical wards over a six-month period were searched at a University Hospital mainframe computer. Relevant laboratory data and clinical details were also registered. Hypoalbuminemia was defined by serum albumin concentration < 3.3 g/dl Fisher, Mann-Whitney, and Student's t tests were applied to compare groups with or without hypoalbuminemia. Ninety-nine patients, classified as hypoalbuminemic, had lower blood hemoglobin (10.68 ± 2.62 vs. 13.54 ± 2.41), and sodium (135.1 ± 6.44 vs. 139.9 ± 4.76mEq/l) and albumin (2.74 ± 0.35 vs. 3.58 ± 0.28g/dl) serum levels than non-hypoalbuminemic (n=43). Pearson's coefficient showed a significant direct correlation between albumin and sodium serum levels (r=0.40) and between serum albumin and blood hemoglobin concentration (r=0.46). Our results suggest that hypoalbuminemic adults have lower serum sodium levels than those without hypoalbuminemia, a phenomenon that may be at least partially attributed to body water retention associated with acute phase response syndrome.
Resumo:
Pressure sores are common among bedridden, elderly, or malnourished patients, and may occur in terminal ill patients because of impaired mobility, fecal or urinary incontinence, and decreased healing capacity. The aim of this study was to compare frequency of pressure sores between malnourished and non-malnourished necropsied adults. METHOD: All (n = 201) adults (age ³ 18 years) autopsied between 1986 and 1996 at the Teaching Hospital of Triangulo Mineiro Medical School (Uberaba) were eligible for the study. Gender, race, weight, height and main diagnoses were recorded. Ninety-six cases were excluded because of probable body water retention (congestive heart failure, hepatic insufficiency, nephrotic syndrome) or pressure sores secondary to peripheral vascular ischemia. Body mass index (BMI) was used to define malnourished (BMI < 18.5 kg/m²) and non-malnourished (BMI > 18.5kg/m²) groups. RESULTS: Except for weight (42.5kg; range: 28-57 vs. 60; 36-134.5kg) and BMI (16.9; range: 12.4-18.5 vs. 22.7; range: 18.5-54.6kg/m²), respectively, there were no statistical differences among 43 malnourished and 62 non-malnourished cases in relation to age (54.9 ± 20.4 vs. 52.9 ± 17.9 years), percentage of white persons (74.4 vs. 64.5%), male gender (76.7 vs. 69.3%) and main diagnoses. Five malnourished (11.6%) and 7 (11.5%) non-malnourished cases had pressure sores (p=0.89). CONCLUSION: Pressure sores were equally common findings in necropsied persons with protein-energy malnutrition, as assessed by body mass index.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.
Resumo:
Soil is the basis underlying the food production chain and it is fundamental to improve and conserve its productive capacity. Imbalanced exploitation can degrade agricultural areas physical, chemical and biologically. The objective of this study was to evaluate some soil physical properties and their relation with organic carbon contents of a Humic Dystrudept under conventional tillage (CT) and no-tillage (NT), for 12 years in rotation (r) and succession (s) cropping systems. The experiment was carried out in Lages, SC (latitude 27 º 49 ' S and longitude 50 º 20 ' W, 937 m asl), using crop sequences of bean-fallow-maize-fallow-soybean in conventional tillage rotation; maize-fallow in conventional tillage succession; bean-oat-maize-turnip-soybean-vetch in no-tillage rotation; and maize-vetch in no-tillage succession. The experimental design was completely randomized with four replications. The soil samples were collected in the layers 0-2.5, 2.5-5, 5-10, and 10-20 cm. The following properties were analyzed: soil density, porosity, aggregate stability, degree of flocculation, water retention, infiltration, mechanical strength, and total organic carbon. Soil aggregation in the surface layer (0-5 cm) was better in the no-tillage than the conventional system, related to higher microporosity, organic carbon contents and water retention capacity, indicating that a periodical tillage of this soil is unnecessary. Infiltration was highest in no-tillage with crop succession.
Resumo:
Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS) can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively), in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.
Resumo:
The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.
Resumo:
Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.