75 resultados para Water demand model
Resumo:
Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.
Resumo:
The Soil Nitrogen Availability Predictor (SNAP) model predicts daily and annual rates of net N mineralization (NNM) based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate). The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer) for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March). Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84). In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.
Resumo:
Infiltration is the passage of water through the soil surface, influenced by the soil type and cultivation and by the soil roughness, surface cover and water content. Infiltration absorbs most of the rainwater and is therefore crucial for planning mechanical conservation practices to manage runoff. This study determined water infiltration in two soil types under different types of management and cultivation, with simulated rainfall of varying intensity and duration applied at different times, and to adjust the empirical model of Horton to the infiltration data. The study was conducted in southern Brazil, on Dystric Nitisol (Nitossolo Bruno aluminoférrico húmico) and Humic Cambisol (Cambissolo Húmico alumínico léptico) soils to assess the following situations: simulated rains on the Nitisol from 2001 to 2012 in 31 treatments, differing in crop type, sowing direction, type of soil opener on the seeder, amount and type of crop residue and amount of liquid swine manure applied; on the Cambisol, rains were simlated from 2006 to 2012 and 18 treatments were evaluated, differing in crop, seeding direction and crop residue type. The constant of the water infiltration rate into the soil varies significantly with the soil type (30.2 mm h-1 in the Nitisol and 6.6 mm h-1 in the Cambisol), regardless of the management system, application time and rain intensity and duration. At the end of rainfalls, soil-water infiltration varies significantly with the management system, with the timing of application and rain intensity and duration, with values ranging from 13 to 59 mm h-1, in the two studied soils. The characteristics of the sowing operation in terms of relief, crop type and amount and type of crop residue influenced soil water infiltration: in the Nitisol, the values of contour and downhill seeding vary between 27 and 43 mm h-1, respectively, with crop residues of corn, wheat and soybean while in the Cambisol, the variation is between 2 and 36 mm h-1, respectively, in soybean and corn crops. The Horton model fits the values of water infiltration rate into the soil, resulting in the equation i = 30.2 + (68.2 - 30.2) e-0.0371t (R2 = 0.94**) for the Nitisol and i = 6.6 + (64.5 - 6.6) e-0.0537t (R2 = 0.99**) for the Cambisol.
Resumo:
ABSTRACT Groundwater management depends on the knowledge on recharge rates and water fluxes within aquifers. The recharge is one of the water cycle components most difficult to estimate. As a result, despite the chosen method, the estimates are subject to uncertainties that can be identified by means of comparison with other approaches. In this study, groundwater recharge estimates based on the water balance in the unsaturated zone is assessed. Firstly, the approach is evaluated by comparing the results with those of another method. Then, the estimates are used as inputs in a transient groundwater flow model in order to assess how the water table would respond to the obtained recharges rates compared to measured levels. The results suggest a good performance of the adopted approach and, despite some inherent limitations, it has advantages over other methods since the data required are easier to obtain.
Resumo:
ABSTRACT High cost and long time required to determine a retention curve by the conventional methods of the Richards Chamber and Haines Funnel limit its use; therefore, alternative methods to facilitate this routine are needed. The filter paper method to determine the soil water retention curve was evaluated and compared to the conventional method. Undisturbed samples were collected from five different soils. Using a Haines Funnel and Richards Chamber, moisture content was obtained for tensions of 2; 4; 6; 8; 10; 33; 100; 300; 700; and 1,500 kPa. In the filter paper test, the soil matric potential was obtained from the filter-paper calibration equation, and the moisture subsequently determined based on the gravimetric difference. The van Genuchten model was fitted to the observed data of soil matric potential versus moisture. Moisture values of the conventional and the filter paper methods, estimated by the van Genuchten model, were compared. The filter paper method, with R2 of 0.99, can be used to determine water retention curves of agricultural soils as an alternative to the conventional method.
Resumo:
The objective of this work was to adapt the CROPGRO model, which is part of the DSSAT system, for simulating the cowpea (Vigna unguiculata) growth and development under soil and climate conditions of the Baixo Parnaíba region, Piauí State, Brazil. In the CROPGRO, only input parameters that define crop species, cultivars, and ecotype were changed in order to characterize the cowpea crop. Soil and climate files were created for the considered site. Field experiments without water deficit were used to calibrate the model. In these experiments, dry matter (DM), leaf area index (LAI), yield components and grain yield of cowpea (cv. BR 14 Mulato) were evaluated. The results showed good fit for DM and LAI estimates. The medium values of R² and medium absolute error (MAE) were, respectively, 0.95 and 264.9 kg ha-1 for DM, and 0.97 and 0.22 for LAI. The difference between observed and simulated values of plant phenology varied from 0 to 3 days. The model also presented good performance for yield components simulation, excluding 100-grain weight, for which the error ranged from 20.9% to 34.3%. Considering the medium values of crop yield in two years, the model presented an error from 5.6%.
Resumo:
The objective of this work was to evaluate the effect of pond management on fish feed, growth, yield, survival, and water and effluent quality, during tambaqui (Colossoma macropomum) juvenile production. Fish were distributed in nine 600 m² earthen ponds, at a density of 8 fish per m²; the rearing period was 60 days. Three different pond management were applied: limed and fertilized (LimFer), limed (Lim), and natural (Nat). Fish were fed with a commercial ration containing 34% crude protein three times daily. There were no significant differences in fish growth or yield. Three main items found in tambaqui stomach were insect, zooplankton and ration, without a significant difference among treatments in proportion. Alkalinity, hardness, and CO2 were greater in LimFer and Lim ponds. Chlorophyll a, transparency, ammonia, nitrite, temperature, and dissolved oxygen of pond water were not significantly different among treatments. Biochemical oxygen demand, total phosphorus, orthophosphate, ammonia, and nitrite were significantly greater in effluents from LimFer ponds. Pond fertilization should be avoided, because growth and yield were similar among the three pond management systems tested; besides, it produces a more impacting effluent.
Resumo:
Abstract: The objective of this work was to evaluate soil water dynamics in areas cultivated with forage cactus clones and to determine how environmental conditions and crop growth affect evapotranspiration. The study was conducted in the municipality of Serra Talhada, in the state of Pernambuco, Brazil. Crop growth was monitored through changes in the cladode area index (CAI) and through the soil cover fraction, calculated at the end of the cycle. Real evapotranspiration (ET) of the three evaluated clones was obtained as the residual term in the soil water balance method. No difference was observed between soil water balance components, even though the evaluated clones were of different genus and had different CAI increments. Accumulated ET was of 1,173 mm during the 499 days of the experiment, resulting in daily average of 2.35 mm. The CAI increases the water consumption of the Orelha de Elefante Mexicana clone. In dry conditions, the water consumption of the Miúda clone responds more slowly to variation in soil water availability. The lower evolution of the CAI of the IPA Sertânia clone, during the rainy season, leads to a higher contribution of the evaporation component in ET. The atmospheric demand controls the ET of clones only when there is higher soil water availability; in this condition, the water consumption of the Miúda clone decreases more rapidly with the increase of atmospheric demand.
Resumo:
The water consumption and the crop coefficient of the banana cv. Pacovan were estimated in Petrolina County, northeastern Brazil, in order to establish guidelines to irrigation water management. Evaluations were carried out since planting in January 1999 to the 3rd harvest in September 2001 on a microsprinkler irrigated orchard, with plants spaced in a 3 x 3 m grid. Average daily water consumption was 3.9, 4.0, and 3.3 mm in the 1st, 2nd and 3rd growing seasons, respectively. Crop coefficient values increased from 0.7 (vegetative growth) to 1.1 (flowering). Even with high soil water availability, transpiration was reduced due to high evaporative demand.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
Extended Hildebrand Solubility Approach (EHSA) was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%). Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.
Resumo:
This study evaluated the adsorption capacity of chromium from contaminated aqueous solutions by using Moringa oleifera Lam. seeds. Parameters such as solution pH, adsorbent mass, contact time between solution and adsorbent, isotherms, thermodynamic, kinetics, and desorption were evaluated. The maximum adsorption capacity (Qm) calculated to be 3.191 mg g-1 for the biosorbent. Activated carbon was used for comparison purposes in addition to the biosorbent. The best fit was obtained by the Langmuir model for both adsorbents. The average desorption value indicated that both the biosorbent and activated carbon have a strong interaction with the metal. The results showed that the biosorbent has advantages owing to its low cost and efficiency in Cr3+ removal from contaminated waters.
Resumo:
In this paper, we carry out a study on the process of sorption of lead in polluted waters usingnatural zeolites, with the objective of analyzing their behavior in the purification of water.Experiments are carried out under static and dynamic conditions to determine the influence of other metal ions, such as: Ca (II), Mg (II), K (I) and Na (I), on this process. We demonstrate that the affinity of Pb (II) with regard to zeolite is higher than that of the ions mentioned above. It allows us to use this material in the capture of lead in residual waters. A lineal model of regression was obtained using a computer program called Eureka which relates the capacity of interchange of zeolite with respect to the concentration of the metal ions present in waters. We also studied the selectivity of zeolite in the process of sorption of Pb (II) compared with other heavy metals like Zn (II) and Cd (II).The results achieved in both cases increase the expectancy about the usage of zeolite as a low cost material for purifing waters.
Resumo:
The numerous methods for calculating the potential or reference evapotranspiration (ETo or ETP) almost always do for a 24-hour period, including values of climatic parameters throughout the nocturnal period (daily averages). These results have a nil effect on transpiration, constituting the main evaporative demand process in cases of localized irrigation. The aim of the current manuscript was to come up with a model rather simplified for the calculation of diurnal daily ETo. It deals with an alternative approach based on the theoretical background of the Penman method without having to consider values of aerodynamic conductance of latent and sensible heat fluxes, as well as data of wind speed and relative humidity of the air. The comparison between the diurnal values of ETo measured in weighing lysimeters with elevated precision and estimated by either the Penman-Monteith method or the Simplified-Penman approach in study also points out a fairly consistent agreement among the potential demand calculation criteria. The Simplified-Penman approach was a feasible alternative to estimate ETo under the local meteorological conditions of two field trials. With the availability of the input data required, such a method could be employed in other climatic regions for scheduling irrigation.
Resumo:
The irrigation management based on the monitoring of the soil water content allows for the minimization of the amount of water applied, making its use more efficient. Taking into account these aspects, in this work, a sensor for measuring the soil water content was developed to allow real time automation of irrigation systems. This way, problems affecting crop yielding such as irregularities in the time to turn on or turn off the pump, and excess or deficit of water can be solved. To develop the sensors were used stainless steel rods, resin, and insulating varnish. The sensors measuring circuit was based on a microcontroller, which gives its output signal in the digital format. The sensors were calibrated using soil of the type Quartzarenic Neosoil. A third order polynomial model was fitted to the experimental data between the values of water content corresponding to the field capacity and the wilting point to correlate the soil water content obtained by the oven standard method with those measured by the electronic circuit, with a coefficient of determination of 93.17%, and an accuracy in the measures of ±0.010 kg kg-1. Based on the results, it was concluded that the sensor and its implemented measuring circuit can be used in the automation process of irrigation systems.