33 resultados para Transport Systems and Logistics
Resumo:
The objective of this study was to verify the potential of SNAP III (Scheduling and Network Analysis Program) as a support tool for harvesting and wood transport planning in Brazil harvesting subsystem definition and establishment of a compatible route were assessed. Initially, machine operational and production costs were determined in seven subsystems for the study area, and quality indexes, construction and maintenance costs of forest roads were obtained and used as SNAP III program input data. The results showed, that three categories of forest road occurrence were observed in the study area: main, secondary and tertiary which, based on quality index, allowed a medium vehicle speed of about 41, 30 and 24 km/hours and a construction cost of about US$ 5,084.30, US$ 2,275.28 and US$ 1,650.00/km, respectively. The SNAP III program used as a support tool for the planning, was found to have a high potential tool in the harvesting and wood transport planning. The program was capable of defining efficiently, the harvesting subsystem on technical and economical basis, the best wood transport route and the forest road to be used in each period of the horizon planning.
Resumo:
The use of fertilizers and solid amendments in agriculture generates special interest for their effect on crop productivity, as well as for their environmental impact. The efficient use of these products demands knowing their physical and mechanical properties, the storing conditions effect and the operational characteristics of the metering systems used in the fertilizing equipment. In this context, the present study was developed with the purpose of evaluating the operational characteristics of different fertilizing metering systems and to determine the adequate metering system-product operational parameters, using powder lime, powder gypsum, granular 10-30-10 (N-P-K), and granular urea. Operational differences were established among four types of commercial fertilizer metering systems, including wire auger, star-shaped feed wheel, feed screw and ridged traction wheel. The study found that the unloading rate depends directly on the fertilizer metering system's rotating speed and is affected by particle size, repose angle, bulk density and moisture content of the applied product. The wire auger and star-shaped feed wheel metering systems were adequate for the distribution of powder products and the feed screw for granulated fertilizers. Furthermore, theoretical and experimental characteristic equations were established, defining curves for calibration and handling of the products plus the rotating speed range in which a better distributing behavior was achieved.
Resumo:
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.