32 resultados para Threshold intensities
Resumo:
The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.
Resumo:
INTRODUCTION: Chronic kidney disease (CKD) and obesity are both associated with reduced physical capacity. The potential benefit of aerobic training on physical capacity has been recognized. The exercise intensity can be established using different methods mostly subjective or indirect. Ventilatory threshold (VT) is a direct and objective method that allows prescribing exercise intensity according to individual capacity. OBJECTIVES: To evaluate the impact of aerobic training at VT intensity on cardiopulmonary and functional capacities in CKD patients with excess of body weight. METHODS: Ten CKD patients (eight men, 49.7 ± 10.1 years; BMI 30.4 ± 3.5 kg/m², creatinine clearance 39.4 ± 9.8 mL/min/1.73 m²) underwent training on a treadmill three times per week during 12 weeks. Cardiopulmonary capacity (ergoespirometry), functional capacity and clinical parameters were evaluated. RESULTS: At the end of 12 weeks, VO2PEAK increased by 20%, and the speed at VO2PEAK increased by 16%. The training resulted in improvement in functional capacity tests, such as six-minute walk test (9.2%), two-minute step test (20.3%), arm curl test (16.3%), sit and stand test (35.7%), and time up and go test (15.3%). In addition, a decrease in systolic and diastolic blood pressures was observed despite no change in body weight, sodium intake and antihypertensive medication. CONCLUSION: Aerobic exercise performed at VT intensity improved cardipulmonary and functional capacities of overweight CKD patients. Additional benefit on blood pressure was observed. These results suggest that VT can be effectively applied for prescribing exercise intensity in this particular group of patients.