48 resultados para Third-order


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the estimation of milk production by means of weekly, biweekly, bimonthly observations and also by method known as 6-5-8, where one observation is taken at the 6th week of lactation, another at 5th month and a third one at the 8th month. The data studied were obtained from 72 lactations of the Holstein Friesian breed of the "Escola Superior de Agricultura "Luiz de Queiroz" (Piracicaba), S. Paulo, Brazil), being 6 calvings on each month of year and also 12 first calvings, 12 second calvings, and so on, up to the sixth. The authors criticize the use of "maximum error" to be found in papers dealing with this subject, and also the use of mean deviation. The former is completely supersed and unadvisable and latter, although equivalent, to a certain extent, to the usual standard deviation, has only 87,6% of its efficiency, according to KENDALL (9, pp. 130-131, 10, pp. 6-7). The data obtained were compared with the actual production, obtained by daily control and the deviations observed were studied. Their means and standard deviations are given on the table IV. Inspite of BOX's recent results (11) showing that with equal numbers in all classes a certain inequality of varinces is not important, the autors separated the methods, before carrying out the analysis of variance, thus avoiding to put together methods with too different standard deviations. We compared the three first methods, to begin with (Table VI). Then we carried out the analysis with the four first methods. (Table VII). Finally we compared the two last methods. (Table VIII). These analysis of variance compare the arithmetic means of the deviations by the methods studied, and this is equivalent to compare their biases. So we conclude tht season of calving and order of calving do not effect the biases, and the methods themselves do not differ from this view point, with the exception of method 6-5-8. Another method of attack, maybe preferrable, would be to compare the estimates of the biases with their expected mean under the null hypothesis (zero) by the t-test. We have: 1) Weekley control: t = x - 0/c(x) = 8,59 - 0/ = 1,56 2) Biweekly control: t = 11,20 - 0/6,21= 1,80 3) Monthly control: t = 7,17 - 0/9,48 = 0,76 4) Bimonthly control: t = - 4,66 - 0/17,56 = -0,26 5) Method 6-5-8 t = 144,89 - 0/22,41 = 6,46*** We denote above by three asterisks, significance the 0,1% level of probability. In this way we should conclude that the weekly, biweekly, monthly and bimonthly methods of control may be assumed to be unbiased. The 6-5-8 method is proved to be positively biased, and here the bias equals 5,9% of the mean milk production. The precision of the methods studied may be judged by their standard deviations, or by intervals covering, with a certain probability (95% for example), the deviation x corresponding to an estimate obtained by cne of the methods studied. Since the difference x - x, where x is the mean of the 72 deviations obtained for each method, has a t distribution with mean zero and estimate of standard deviation. s(x - x) = √1+ 1/72 . s = 1.007. s , and the limit of t for the 5% probability, level with 71 degrees of freedom is 1.99, then the interval to be considered is given by x ± 1.99 x 1.007 s = x ± 2.00. s The intervals thus calculated are given on the table IX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After going through the more important theories on cellular permeability, researches were undertaken with the purpose of proving the actual influence of the various degrees of cellular permeability on the phenomena of organic resistance against infections, and on the production of antibodies. Three groups of substances known to have action on cellular permeability were used; the first consisting of the following permeable substances: testos-terona, acetylcholine, and the spreading-factor of the staphyloccocus. The second group included substances which help in developing low cellular permeability: atropin, adrenalin and calcium. Finally, the third group consisted of a substance which helps to maintain normal permeability: cortin (an extract of the suprarenal cortex). In order to study the process developed by these elements with regard to organic resistance against infections, adult mice were inoculated with the following germs: K. pneumoniae, P. aeruginosa, S. enteriditis and D. pneumoniae, in the smallest possible amount capable of starting a mortal sep infection in approximately 24 hours, exception made of D. pneumonias which causes death in 48 hours. The animals were divided into groups of 10, a before taking the injections containing the germs, they were given the sub lances under observation, through their peritoneum of intramuscularly. T. animals that died were autopsied and blood was taken from their hearts an aseptic process so as not to introduce extraneous organisms. For the purpose of determining the development of antibodies (hem lysins, precipitins and aglutinins), rabbits were used, which had been prep ously immunized by a treatment consisting of 6 intravenous injections of polyvolent antigen made of sheep blood cells, fresh human serum, and of suspension of S. enteriditis. It was concluded that: Cellular permeability plays a very important part in the development infections. Permeable substances help the development of germ infections. Substances helping to develop low permeability proved not to have any influence worth mentioning. Substances helping to maintain normal permeability, such as coffin, it crease resistance against infections. The different substances used which have action on cellular permeability had no influence worth mentioning on the development of certain ant bodies (hemolysins, precipitins and aglutinins). It was admitted that the phenomena under study relative to resistance against infections are closely connected to the dynamics of the cellular elements, which circumstance is basically dependent on the permeability of Citations of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work deals with the systematic, biological and economic problems related to Corythaica cyathicollis (Costa, 1864) (Hemip., Tingidae). In the first part are presented the generic characteristics of Corythaica and is discussed the status of the specific name. The validity of C. cyathicollis, as stated by DRAKE and his collaborators, was denied by MONTE in his last works, he considered the species as C. passiflorae. Even in the modern literature no agreement has been achieved and three names are still used (cyathicollis, passiflorae and planaris) to designate the same insect. In order to resolve definitively this problem, a Neotype is designed to fill the place of the missing type of C. cyathicollis. Also in the first parte is discussed the taxonomic value of both male and female genitalia. The whole male copulator apparatus is studied and are illustrated the genital capsules of 8 species of this genus. Special mention is made of the shape of the basal plates and the proportions of the segmental membrana. The female genitalia is studied based upon the work of FELDMAN & BAILEY (1952). In the second part the biological cycle of C. cyathicollis is carefully studied. Descriptions of the egg are done and the ways of oviposition. The number of eggs laid by the female was observed to be about 350, during a period of more than 45 days. The eclosion of the neanide I is illustrated in some of its phases and the 5 larval instars are described and illustrated. Ending this part are included the lists of parasites and predators observed as well as the plant hosts. The actual geographical distribution is presented, based chiefly on HURD (1945). The economic problems concerning this species are reported in the third part of the work, and the ways of control are discussed. An experiment was carried out involving 4 insecticides: Malathion and Parathion, commonly used against this "lace bug"; Toxaphene and Dimethoate (American Cyanamid 12.880), the last one is an insecticide recently introduced in Brazil and was not previously used for these purposes, but gave the best results and it is quite able to control these insects even on crops showing highly developed infestations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L1, L2 and L3 of Oxysarcodexia paulistanensis (Mattos), L3 of O. confusa Lopes, L2 of Ravinia belforti (Prado & Fonseca) and L2 of Oxyvinia excisa (Lopes) were described and figured using scanning electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to widen the present knowledge on the biology of this species, a study on the resistance to starvation was carried out among all nymphal stages and the adult stage (male and female). All evolutive stages were weighed on precision scale in three different nutritional situations: fed, non-fed and death registered after starvation. This procedure has allowed us to calculate the amount of blood taken in each stage and during the whole cycle, the average loss of weight during starvation and its relations with the initial weight. The insects were fed on mice and after eclosion or ecdisis they were isolated for observation of the starving period. Throuhout the whole experiment they were kept in a B. O. D./DOB incubator (28ºC and 90%R.U.). The resistance to starvation of the insects has grown from the first stage on (average of 15.5 days) to the fifth stage (average of 75.64 days); on the adult stage, the resistance period was equal to the third stage with an average of 41.76 for the males and 44.82 for the females. The amount of ingested blood was greater at the fifth stage worth 34.14 mg, corresponding to 2,04 times its initial weight. The average weight loss during the starvation was greater at the adult stage (23.95 mg), corresponding to 61.52% of the total weight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the morphology of young Chrysomya albiceps forms, newly hatched larvae were collected at 2 hr intervals, during the first 56 hr; after this time the collection was made at 12 hr intervals. For identification and drawing, larvae were placed between a slide and a coverslip. The cephalopharyngeal skeletons along with the first and last segments were cut off for observation of their structures and spiracles. The larvae present microspines, which are distributed randomly throughout the 12 segments of the body surface; the cephalopharyngeal skeleton varies in shape and extent of sclerotization according to larval instar; the second and third instars have relatively long processes (tubercles) on the dorsal, lateral and ventral surfaces, with microspine circles on the terminal portion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the positive results obtained regarding the molluscicidal properties of the latex of Euphorbia splendens that were corroborated in laboratory and field tests under restricted conditions, a field study was conducted in experimental streams located in an endemic area. After recording the average annual fluctuations of vectors in three streams, a solution of E. splendens latex at 12 ppm was applied in stream A, a solution of niclosamide at 3 ppm that was applied in stream B and a third stream (C) remained untreated for negative control. Applications of E. splendens and niclosamide resulted in a mortality of 100% among the snails collected in the streams A and B. No dead snails were found in the negative control stream. A monthly follow-up survey conducted during three consecutive months confirmed the return of vectors to both experimental streams treated with latex and niclosamide. This fact has called for a need to repeat application in order to reach the snails that remained buried in the mud substrate or escaped to the water edge, as well as, newly hatched snails that did not respond to the concentration of these molluscicides. Adults snails collected a month following treatment led us to believe that they had migrate from untreated areas of the streams to those previously treated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We carried out a morphometric study of the esophagus of cross-bred dogs experimentally infected or consecutively reinfected with Trypanosoma cruzi 147 and SC-1 strains, in order to verify denervation and/or neuronal hypertrophy in the intramural plexus. The animals were sacrificed in the chronic stage, 38 months after the initial infection. Neither nests of amastigotes, nor myositis or ganglionitis, were observed in all third inferior portions of esophageal rings analyzed. No nerve cell was identified in the submucous of this organ. There was no significant difference (p>0.05) between the number, maximum diameter, perimeter, or area and volume of the nerve cells of the myenteric plexus of infected and/or reinfected dogs and of the non-infected ones. In view of these results we may conclude that the 147 and SC-1 strains have little neurotropism and do not determine denervation and/or hypertrophy in the intramural esophageal plexuses in the animals studied, independent of the reinfections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the stool samples of 151 school children in a district of the city of Portoviejo (Ecuador) in order to determine the prevalence and intensity of soil-transmitted helminthiasis (STH) and their relationships with anthropometric indices. The samples were analyzed with the semiquantitative Kato-Katz technique and the intensity of infections was categorized as light, moderate or high according to the thresholds set by the World Health Organization. Prevalence of soil transmitted helmintiasis was 65% (92 out of 141 collected samples), Ascaris lumbricoides was the most common STH (63%) followed by Trichuris trichiura (10%) and hookworm (1.4%). Heavy intensity infections were found in 8.5% of the stool samples, with T. trichiura showing higher worm burdens than A. lumbricoides. Sixteen percent of the children were below the third percentile for weight (wasted), while 27% were below the third percentile for height (stunted). A significant relationship was found between the worm burden and the degree of stunting. This study suggests that the periodic administration of an antihelminthic drug should be targeted to preschool and school children to allow a normal growth spurt and prevent stunting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the specificity and sensitivity of the techniques for the human anisakidosis diagnosis, a method of affinity chromatography for the purification of species-specific antigens from Anisakis simplex third-stage larvae (L3) has been developed. New Zealand rabbits were immunized with A. simplex or Ascaris suum antigens or inoculated with Toxocara canis embryonated eggs. The IgG specific antibodies were isolated by means of protein A-Sepharose CL-4B beads columns. IgG anti-A. simplex and -A. suum were coupled to CNBr-activated Sepharose 4B. For the purification of the larval A. simplex antigens, these were loaded into the anti-A. simplex column and bound antigens eluted. For the elimination of the epitopes responsible for the cross-reactions, the A. simplex specific proteins were loaded into the anti-A. suum column. To prove the specificity of the isolated proteins, immunochemical analyses by polyacrylamide gel electrophoresis were carried out. Further, we studied the different responses by ELISA to the different antigenic preparations of A. simplex used, observing their capability of discriminating among the different antisera raised in rabbits (anti-A. simplex, anti-A. suum, anti-T. canis). The discriminatory capability with the anti-T. canis antisera was good using the larval A. simplex crude extract (CE) antigen. When larval A. simplex CE antigen was loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with A. simplex CE antigen, its capability for discriminate between A. simplex and A. suum was improved, increasing in the case of T. canis. The best results were obtained using larval A. simplex CE antigen loaded into a CNBr-activated Sepharose 4B coupled to IgG from rabbits immunized with adult A. suum CE antigen. When we compared the different serum dilution and antigenic concentration, we selected the working serum dilution of 1/400 and 1 µg/ml of antigenic concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe some ultrastructure of the third-instar Megaselia scalaris (Diptera: Phoridae) using scanning electron microscopy, with the cephalic segment, anterior spiracle and posterior spiracle being emphasized. This study provides the taxonomic information of this larval species, which may be useful to differentiate from other closely-related species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horn fly immatures were raised in media containing different concentrations of diflubenzuron in order to verify their susceptibility to this insect growth regulator (IGR). The 50% and 95% lethal concentrations of diflubenzuron for the population (LC50, LC95) were determined as well as the effect of this IGR on the different immature horn fly stages. The tests were performed using the progeny of adults collected in the field. The immatures were maintained in a growth chamber at 25.0 ± 0.5ºC and 12-12 h photoperiod. IGR concentrations of 300 ppb, 100 ppb and 50 ppb were lethal for 100% of the sample. Pupae malformation occurred in the breeding media containing different diflubenzuron concentrations. Values for LC50 , LC95 (± 95% fiducial limits) and the slope of the regression line were respectively, 25.521 ± 1.981 ppb, 34.650 ± 2.001 ppb and 12.720 ± 1.096. The third larval instar was more sensitive to the sub-lethal concentration of the product than the first and second ones were. The results indicate that this IGR can be an important tool for controlling horn fly populations as well as for managing horn fly resistance to conventional insecticides against Haematobia irritans in Uberlândia, State of Minas Gerais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiostrongylus cantonensis, A. costaricensis, and A. vasorum are etiologic agents of human parasitic diseases. Their identification, at present, is only possible by examining the adult worm after a 40-day period following infection of vertebrate hosts with the third-stage larvae. In order to obtain a diagnostic tool to differentiate larvae and adult worm from the three referred species, polymerase chain reaction-restriction fragment length polymorphism was carried out. The rDNA second internal transcribed spacer (ITS2) and mtDNA cytochrome oxidase I regions were amplified, followed by digestion of fragments with the restriction enzymes RsaI, HapII, AluI, HaeIII, DdeI and ClaI. The enzymes RsaI and ClaI exhibited the most discriminating profiles for the differentiation of the regions COI of mtDNA and ITS2 of rDNA respectively. The methodology using such regions proved to be efficient for the specific differentiation of the three species of Angiostrongylus under study.