46 resultados para Structural estimation
Resumo:
Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.
Resumo:
The agricultural potential of Latosols of the Brazilian Cerrado region is high, but when intensively cultivated under inappropriate management systems, the porosity can be seriously reduced, leading to rapid soil degradation. Consequently, accelerated erosion and sedimentation of springs and creeks have been observed. Therefore, the objective of this study was to evaluate structural changes of Latosols in Rio Verde, Goiás, based on the Least Limiting Water Range (LLWR), and relationships between LLWR and other physical properties. Soil samples were collected from the B horizons of five oxidic Latosols representing the textural variability of the Latosols of the Cerrado biome. LLWR and other soil physical properties were determined at various soil compaction degrees induced by uniaxial compression. Soil compaction caused effects varying from enhanced plant growth due to higher water retention, to severe restriction of edaphic functions. Also, inverse relationships were observed between clay content and bulk density values (Bd) under different structural conditions. Bd values corresponding to critical soil macroporosity (BdcMAC) were more restrictive to a sustainable use of the studied Latosols than the critical Bd corresponding to LLWR (BdcLLWR). The high tolerable compression potential of these oxidic Latosols was related to the high aeration porosity associated to the granular structure.
Resumo:
Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.
Resumo:
Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.
Resumo:
Gypsum application may enhance the soil quality for plants in terms of soil chemical and physical properties. The objective of this study was to evaluate the effects of gypsum application on the structural quality of a no-tillage Red Latosol. The experiment was initiated in September 2005 in Guarapuava-PR, with gypsum applications of 0; 4; 8; and 12 Mg ha-1 on the soil surface. In November 2009, two soil blocks were sampled from the 0-0.3 m layer for visual evaluation of the soil structure quality (Sq) and to determine the aggregate-tensile strength (ATS). Soil penetration resistance (PR) and gravimetric moisture (H%) of the 0-0.300 m layer were evaluated, and soil cores were collected (layers 0.000-0.075 and 0.075-0.150 m), to determine soil bulk density (BD), total soil porosity (TP), microporosity (Mi), and macroporosity (Ma). Data were subjected to analysis of regression at 5 %. No significant effects of gypsum application on ATS and H % of aggregates were observed, but for Sq, a quadratic effect (0.000-0.075 m) and linear increase (0.075-0.150 and 0.150-0.300 m) were stated, indicating soil quality decrease, although Sq remained mostly below 3.0, with good to intermediate soil quality. Soil PR increased with gypsum, but also remained below critical levels. No effect was observed for soil H % at the moment of PR determination on the field. The gypsum applications decreased BD in the 0.075-0.150 m layer, and increased PT and Ma, while in 0.000-0.075 m some Ma was converted to Mi, without affecting PT and BD. These last results indicate a gain in soil structural quality by gypsum applications, but the higher scores of soil structure and values of soil penetration resistance, though still below thresholds, should be monitored to prevent limitations to soil use in the future.
Resumo:
Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.
Resumo:
The soil water available to crops is defined by specific values of water potential limits. Underlying the estimation of hydro-physical limits, identified as permanent wilting point (PWP) and field capacity (FC), is the selection of a suitable method based on a multi-criteria analysis that is not always clear and defined. In this kind of analysis, the time required for measurements must be taken into consideration as well as other external measurement factors, e.g., the reliability and suitability of the study area, measurement uncertainty, cost, effort and labour invested. In this paper, the efficiency of different methods for determining hydro-physical limits is evaluated by using indices that allow for the calculation of efficiency in terms of effort and cost. The analysis evaluates both direct determination methods (pressure plate - PP and water activity meter - WAM) and indirect estimation methods (pedotransfer functions - PTFs). The PTFs must be validated for the area of interest before use, but the time and cost associated with this validation are not included in the cost of analysis. Compared to the other methods, the combined use of PP and WAM to determine hydro-physical limits differs significantly in time and cost required and quality of information. For direct methods, increasing sample size significantly reduces cost and time. This paper assesses the effectiveness of combining a general analysis based on efficiency indices and more specific analyses based on the different influencing factors, which were considered separately so as not to mask potential benefits or drawbacks that are not evidenced in efficiency estimation.
Resumo:
Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.
Resumo:
Synthetic aluminum-substituted maghemites were characterized by total chemical analysis, powder X-ray diffraction (XRD), Mössbauer spectroscopy (ME), and vibrating sample magnetometry (VSM). The aim was to determine the structural, magnetic, and hyperfine properties of γ-Fe2-xAl xO3 as the Al concentration is varied. The XRD results of the synthetic products were indexed exclusively as maghemite. Increasing Al for Fe substitution decreased the mean crystalline dimension and shifted all diffraction peaks to higher º2θ angles. The a0 dimension of the cubic unit cell decreased with increasing Al according to the equation a o = 0.8385 - 3.63 x 10-5 Al (R²= 0.94). Most Mössbauer spectra were composed of one sextet, but at the highest substitution rate of 142.5 mmol mol-1 Al, both a doublet and sextet were obtained at 300 K. All hyperfine parameters from the sub-spectra were consistent with high-spin Fe3+ (0.2 a 0.7 mms-1) and suggested a strong superparamagnetic component associated with the doublet. The magnetic hyperfine field of the sextets decreased with the amount of Al-substitution [Bhf (T) = 49.751 - 0.1202Al; R² = 0.94] while the linewidth increased linearly. The saturation magnetization also decreased with increasing isomorphous substitution.
Resumo:
Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.
Resumo:
The plant-available water capacity of the soil is defined as the water content between field capacity and wilting point, and has wide practical application in planning the land use. In a representative profile of the Cerrado Oxisol, methods for estimating the wilting point were studied and compared, using a WP4-T psychrometer and Richards chamber for undisturbed and disturbed samples. In addition, the field capacity was estimated by the water content at 6, 10, 33 kPa and by the inflection point of the water retention curve, calculated by the van Genuchten and cubic polynomial models. We found that the field capacity moisture determined at the inflection point was higher than by the other methods, and that even at the inflection point the estimates differed, according to the model used. By the WP4-T psychrometer, the water content was significantly lower found the estimate of the permanent wilting point. We concluded that the estimation of the available water holding capacity is markedly influenced by the estimation methods, which has to be taken into consideration because of the practical importance of this parameter.
Resumo:
Water-soluble polymers are characterized as effective flocculating agents due to their molecular features. Their application to soils with horizons with structural problems, e.g, a cohesive character, contributes to improvements in the physical quality and thus to the agricultural suitability of such soils. The purpose of this study was to evaluate the structural quality of soils with cohesive horizons of coastal tablelands in the State of Pernambuco treated with polyacrylamide (PAM) as chemical soil conditioner. To this end, three horizons (one cohesive and two non-cohesive) of a Yellow Argisol (Ultisol) were evaluated and to compare cohesive horizons, the horizon of a Yellow Latosol (Oxisol) was selected. The treatments consisted of aqueous PAM solutions (12.5; 50.0; 100.0 mg kg-1) and distilled water (control). The structural aspects of the horizons were evaluated by the stability (soil mass retained in five diameter classes), aggregate distribution per size class (mean weight diameter- MWD, geometric mean diameter - GMD) and the magnitude of the changes introduced by PAM by measuring the sensitivity index (Si). Aqueous PAM solutions increased aggregate stability in the largest evaluated diameter class of the cohesive and non-cohesive horizons, resulting in higher MWD and GMD, with highest efficiency of the 100 mg kg-1 solution. The cohesive horizon Bt1 in the Ultisol was most sensitive to the action of PAM, where highest Si values were found, but the structural quality of the BA horizon of the Oxisol was better in terms of stability and aggregate size distribution.
Resumo:
Soils are the foundation of terrestrial ecosystems and their role in food production is fundamental, although physical degradation has been observed in recent years, caused by different cultural practices that modify structures and consequently the functioning of soils. The objective of this study was to evaluate possible structural changes and degradation in an Oxisol under different managements for 20 years: no-tillage cultivation with and without crop rotation, perennial crop and conventional tillage, plus a forested area (reference). Initially, the crop profile was described and subsequently, 10 samples per management system and forest soil were collected to quantify soil organic matter, flocculation degree, bulk density, and macroporosity. The results indicated structural changes down to a soil depth of 50 cm, with predominance of structural units ∆μ (intermediate compaction level) under perennial crop and no-tillage crop rotation, and of structural units ∆ (compacted) under conventional tillage and no-tillage. The soil was increasingly degraded in the increasing order: forest => no-tillage crop rotation => perennial crop => no-tillage without crop rotation => conventional tillage. In all managements, the values of organic matter and macroporosity were always below and bulk density always above those of the reference area (forest) and, under no-tillage crop rotation and perennial crop, the flocculation degree was proportionally equal to that of the reference area.
Resumo:
Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.
Resumo:
Taking into account the nature of the hydrological processes involved in in situ measurement of Field Capacity (FC), this study proposes a variation of the definition of FC aiming not only at minimizing the inadequacies of its determination, but also at maintaining its original, practical meaning. Analysis of FC data for 22 Brazilian soils and additional FC data from the literature, all measured according to the proposed definition, which is based on a 48-h drainage time after infiltration by shallow ponding, indicates a weak dependency on the amount of infiltrated water, antecedent moisture level, soil morphology, and the level of the groundwater table, but a strong dependency on basic soil properties. The dependence on basic soil properties allowed determination of FC of the 22 soil profiles by pedotransfer functions (PTFs) using the input variables usually adopted in prediction of soil water retention. Among the input variables, soil moisture content θ (6 kPa) had the greatest impact. Indeed, a linear PTF based only on it resulted in an FC with a root mean squared residue less than 0.04 m³ m-3 for most soils individually. Such a PTF proved to be a better FC predictor than the traditional method of using moisture content at an arbitrary suction. Our FC data were compatible with an equivalent and broader USA database found in the literature, mainly for medium-texture soil samples. One reason for differences between FCs of the two data sets of fine-textured soils is due to their different drainage times. Thus, a standardized procedure for in situ determination of FC is recommended.