42 resultados para Stereotactic ablative radiotherapy
Resumo:
Transplantation of mobilized peripheral blood stem cells (PBSC) for rescue of bone marrow function after high-dose chemo-/radiotherapy is widely used in hematologic malignancies and solid tumors. Mobilization of stem cells to the peripheral blood can be achieved by cytokine treatment of the patients. The main advantage of autologous PBSC transplantation over bone marrow transplantation is the faster recovery of neutrophil and platelet counts. The threshold number of PBSC required for adequate rescue of bone marrow is thought to be about 2 x 106 CD34+ cells/kg, if the stem cells are collected by leukapheresis and subsequently cryopreserved. We show that this critical number could be further reduced to as few as 0.2 x 106 cells/kg. In 30 patients with multiple myeloma and 25 patients with bad risk lymphoma 1 liter of granulocyte colony-stimulating factor (G-CSF)-mobilized unprocessed whole blood (stored at 4oC for 1-3 days) was used for transplantation. Compared to a historical control group, a significant reduction in the duration of neutropenia, thrombocytopenia and the length of hospital stay was documented. Furthermore, the effect of stem cell support was reflected by a lower need for platelet and red cell transfusions and a reduced antibiotic use. Considering the data as a whole, a cost saving of about 50% was achieved. To date, this easy to perform method of transplantation is only feasible following high-dose therapies that are completed within 72 h, since longer storage of unprocessed blood is accompanied by a substantial loss of progenitor cell function. Ongoing investigations include attempts to prolong storage times for whole blood
Resumo:
Clinical trials indicate that amifostine may confer protection on various normal tissues without attenuating anti-tumor response. When administered prior to chemotherapy or radiotherapy, it may provide a broad spectrum of cytoprotection including against alkylating drugs. The mechanism of protection resides in the metabolism at normal tissue site by membrane-bound alkaline phosphatase. Toxicity of this drug is moderate with hypotension, nausea and vomiting, and hypocalcemia being observed. We report a phase II study using amifostine as a protective drug against high-dose cyclophosphamide (HDCY) (7 g/m2), used to mobilize peripheral blood progenitor cells (PBPC) and to reduce tumor burden. We enrolled 29 patients, 22 (75.9%) affected by aggressive and 7 (24.1%) by indolent non-Hodgkin's lymphoma (NHL), who were submitted to 58 infusions of amifostine and compared them with a historical group (33 patients) affected by aggressive NHL and treated with VACOP-B followed by HDCY. The most important results in favor of amifostine were the reduction of intensity of cardiac, pulmonary and hepatic toxicity, and a significant reduction of frequency and severity of mucositis (P = 0.04). None of the 29 patients died in the protected group, while in the historical group 2/33 patients died because of cardiac or pulmonary toxicity and 2 patients stopped therapy due to toxicity. Amifostine did not prevent the aplastic phase following HDCY. PBPC collection and hematological recovery were adequate in both groups. The number of CFU-GM (colony-forming units-granulocyte/macrophage) colonies and mononuclear cells in the apheresis products was significantly higher in the amifostine group (P = 0.02 and 0.01, respectively). Side effects were mild and easily controlled. We conclude that amifostine protection should be useful in HDCY to protect normal tissues, with acceptable side effects.
Resumo:
During routine investigations, we are surprised to find that therapy for bone metastases is sometimes delayed for a considerable period of time. To determine the extent of this delay and its causes, we reviewed the medical records of symptomatic patients seen at our hospital who had been recently diagnosed as having bone metastases for the last four years. The treatment delay was defined as the interval between presentation with symptoms and definitive treatment for bone metastases. The diagnostic delay was defined as the interval between presentation with symptoms and diagnosis of bone metastases. The results of diagnostic radiological examinations were also reviewed for errors. The study population included 76 males and 34 females with a median age of 66 years. Most bone metastases were diagnosed radiologically. Over 75% of patients were treated with radiotherapy. The treatment delay ranged from 2 to 307 days, with a mean of 53.3 days. In 490 radiological studies reviewed, we identified 166 (33.9%) errors concerning 62 (56.4%) patients. The diagnostic delay was significantly longer for patients with radiological errors than for patients without radiological errors (P < 0.001), and much of it was due to radiological errors. In conclusion, the treatment delay in patients with symptomatic bone metastases was much longer than expected, and much of it was caused by radiological errors. Considerable efforts should therefore be made to more carefully examine the radiological studies in order to ensure prompt treatment of bone metastases.
Resumo:
The prone position can be used for the planning of adjuvant radiotherapy after conservative breast surgery in order to deliver less irradiation to lung and cardiac tissue. In the present study, we compared the results of three-dimensional conformal radiotherapy planning for five patients irradiated in the supine and prone position. Tumor stage was T1N0M0 in four patients and T1N1M0 in one. All patients had been previously submitted to conservative breast surgery. Breast size was large in three patients and moderate in the other two. Irradiation in the prone position was performed using an immobilization foam pad with a hole cut into it to accommodate the breast so that it would hang down away from the chest wall. Dose-volume histograms showed that mean irradiation doses reaching the ipsilateral lung were 8.3 ± 3.6 Gy with the patient in the supine position and 1.4 ± 1.0 Gy with the patient in the prone position (P = 0.043). The values for the contralateral lung were 1.3 ± 0.7 and 0.3 ± 0.1 Gy (P = 0.043) and the values for cardiac tissue were 4.6 ± 1.6 and 3.0 ± 1.7 Gy (P = 0.079), respectively. Thus, the dose-volume histograms demonstrated that lung tissue irradiation was significantly lower with the patient in the prone position than in the supine position. Large-breasted women appeared to benefit most from irradiation in the prone position. Prone position breast irradiation appears to be a simple and effective alternative to the conventional supine position for patients with large breasts, since they are subjected to lower pulmonary doses which may cause less pulmonary side effects in the future.
Resumo:
Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.
Resumo:
We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.
Resumo:
Gastric cancer is the forth most frequent malignancy and the second most common cause of cancer death worldwide. DNA methylation is the most studied epigenetic alteration, occurring through a methyl radical addition to the cytosine base adjacent to guanine. Many tumor genes are inactivated by DNA methylation in gastric cancer. We evaluated the DNA methylation status of ANAPC1, CDKN2A and TP53 by methylation-specific PCR in 20 diffuse- and 26 intestinal-type gastric cancer samples and 20 normal gastric mucosa in individuals from Northern Brazil. All gastric cancer samples were advanced stage adenocarcinomas. Gastric samples were surgically obtained at the João de Barros Barreto University Hospital, State of Pará, and were stored at -80°C before DNA extraction. Patients had never been submitted to chemotherapy or radiotherapy, nor did they have any other diagnosed cancer. None of the gastric cancer samples presented methylated DNA sequences for ANAPC1 and TP53. CDKN2A methylation was not detected in any normal gastric mucosa; however, the CDKN2A promoter was methylated in 30.4% of gastric cancer samples, with 35% methylation in diffuse-type and 26.9% in intestinal-type cancers. CDKN2A methylation was associated with the carcinogenesis process for ~30% diffuse-type and intestinal-type compared to non-neoplastic samples. Thus, ANAPC1 and TP53 methylation was probably not implicated in gastric carcinogenesis in our samples. CDKN2A can be implicated in the carcinogenesis process of only a subset of gastric neoplasias.
Resumo:
Loss of Y-chromosome has been correlated with older age in males. Furthermore, current evidence indicates that Y-chromosome loss also occurs in several human tumors, including head and neck carcinomas. However, the association between Y nullisomy and the occurrence of neoplasias in elderly men has not been well established. In the present study, the association between Y-chromosome loss and head and neck carcinomas was evaluated by comparison to cells from peripheral blood lymphocytes and normal mucosa of cancer-free individuals matched for age using dual-color fluorescence in situ hybridization. Twenty-one patients ranging in age from 28 to 68 years were divided into five-year groups for comparison with 16 cancer-free individuals matched for age. The medical records of all patients were examined to obtain clinical and histopathological data. None of the patients had undergone radiotherapy or chemotherapy before surgery. In all groups, the frequency of Y-chromosome loss was higher among patients than among normal reference subjects (P < 0.0001) and was not age-dependent. These data suggest that Y-chromosome loss is a tumor-specific alteration not associated with advanced age in head and neck carcinomas.
Resumo:
The present study investigated the effect of thioperamide (THIO), an H3 histaminergic receptor antagonist, microinjected into the cerebellar vermis on emotional memory consolidation in male Swiss albino mice re-exposed to the elevated plus-maze (EPM). We implanted a guide cannula into the cerebellar vermis using stereotactic surgery. On the third day after surgery, we performed behavioral tests for two consecutive days. On the first day (exposure), the mice (n=10/group) were exposed to the EPM and received THIO (0.06, 0.3, or 1.5 ng/0.1 µL) immediately after the end of the session. Twenty-four hours later, the mice were re-exposed to the EPM under the same experimental conditions, but without drug injection. A reduction in the exploration of the open arms upon re-exposure to the EPM (percentage of number of entries and time spent in open arms) compared with the initial exposure was used as an indicator of learning and memory. One-way analysis of variance (ANOVA) followed by the Duncan post hoc test was used to analyze the data. Upon re-exposure, exploratory activity in the open arms was reduced in the control group, and with the two highest THIO doses: 0.3 and 1.5 ng/0.1 µL. No reduction was seen with the lowest THIO dose (0.06 ng/0.1 µL), indicating inhibition of the consolidation of emotional memory. None of the doses interfered with the animals' locomotor activity. We conclude that THIO at the lowest dose (0.06 ng/0.1 µL) microinjected into the cerebellum impaired emotional memory consolidation in mice.
Resumo:
Acute cerebral hemorrhage (ACH) is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS) between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL) by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH) group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units.
Resumo:
According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.
Resumo:
Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.