37 resultados para Stable Autoregressive Models
Resumo:
Chimpanzees are being used in the study of immune response to Plasmodium falciparum malaria pre-erythrocytic stages (MPES). Responses induced by immunisation with recombinant/synthetic antigens and by irradiated sporozoites are being evaluated in a model system that is phylogenetically close to humans and that is amenable to limited manipulation not possible in humans. The value of chimpanzees for the in-depth study of immunological mechanisms at work in MPES-induced protection are discussed. A total number of 7 chimpanzees have been used to evaluate the immune response to recombinant antigens, and 5 have been challenged with large numbers of sporozoites, followed by surgical liver-wedge resection, in order to generate infected liver tissue for histological and immunological studies. As a complementary model, SCID mice carrying live, transplanted human and primate hepatocytes have been inoculated with sporozoites and infection of transplanted cells has been monitored by histological and immunological methods. In ongoing experiments chimpanzees are being immunised with MPES-derived lipopeptides that have been shown to overcome MHC restriction in mice, and with irradiated sporozoites.
Resumo:
The mucosa associated lymphoid tissue regulates and coordinates immune responses against mucosal pathogens. Mucosal tissues are the major targets exposed to HIV during transmission. In this paper we describe in vitro models of HIV mucosal infection using human explants to investigate target cells within this tissue.
Resumo:
There are several experimental models describing in vivo eosinophil (EO) migration, including ip injection of a large volume of saline (SAL) or Sephadex beads (SEP). The aim of this study was to investigate the mechanisms involved in the EO migration in these two models. Two consecutive injections of SAL given 48 hr apart, induced a selective recruitment of EO into peritoneal cavity of rats, which peaked 48 hr after the last injection. SEP, when injected ip, promoted EO accumulation in rats. The phenomenom was dose-related and peaked 48 hr after SEP injection. To investigate the mediators involved in this process we showed that BW A4C, MK 886 and dexamethasone (DXA) inhibited the EO migration induced by SAL and SEP. To investigate the source of the EO chemotactic factor we showed that mast cells, macrophages (MO), but not lymphocytes, incubated in vitro in presence of SAL released a factor which induced EO migration. With SEP, only mast cells release a factor that induced EO migration, which was inhibited by BW A4C, MK 886 and DXA. Furthermore, the chemotactic activity of SAL-stimulated mast cells was inhibited by antisera against IL-5 and IL-8 (interleukin). SAL-stimulated MO were only inhibited by anti-IL-8 antibodies as well SEP-stimulated mast cells. These results suggest that the EO migration induced by SAL may be dependent on resident mast cells and MO and mediated by LTB4, IL-5 and IL-8. SEP-induced EO migration was dependent on mast cells and may be mediated by LTB4 and IL-8. Furthermore, IL-5 and IL-8 induced EO migration, which was also dependent on resident cells and mediated by LTB4 . In conclusion, EO migration induced by SAL is dependent on mast cells and MO, whereas that induced by SEP is dependent on mast cells alone. Stimulated mast cells release LTB4, IL-5 and IL-8 while MO release LTB4 and IL-8. The IL-5 and IL-8 release by the SAL or SEP-stimulated resident cells may act in an autocrine fashion, thus potentiating LTB4 release.
Resumo:
Eosinophils play a central role in the establishment and outcome of bronchial inflammation in asthma. Animal models of allergy are useful to answer questions related to mechanisms of allergic inflammation. We have used models of sensitized and boosted guinea pigs to investigate the nature of bronchial inflammation in allergic conditions. These animals develop marked bronchial infiltration composed mainly of CD4+ T-lymphocytes and eosinophils. Further provocation with antigen leads to degranulation of eosinophils and ulceration of the bronchial mucosa. Eosinophils are the first cells to increase in numbers in the mucosa after antigen challenge and depend on the expression of alpha 4 integrin to adhere to the vascular endothelium and transmigrate to the mucosa. Blockage of alpha4 integrin expression with specific antibody prevents not only the transmigration of eosinophils but also the development of bronchial hyperresponsiveness (BHR) to agonists in sensitized and challenged animals, clearly suggesting a role for this cell type in this altered functional state. Moreover, introduction of antibody against Major Basic Protein into the airways also prevents the development of BHR in similar model. BHR can also be suppressed by the use of FK506, an immunosuppressor that reduces in almost 100% the infiltration of eosinophils into the bronchi of allergic animals. These data support the concept that eosinophil is the most important pro-inflammatory factor in bronchial inflammation associated with allergy.
Resumo:
Molecular characterization of one stable strain of Trypanosoma cruzi, the 21 SF, representative of the pattern of strains isolated from the endemic area of São Felipe, State of Bahia, Brazil, maintained for 15 years in laboratory by serial passages in mice and classified as biodeme Type II and zymodeme 2 has been investigated. The kinetoplast DNA (kDNA) of parental strain, 5 clones and 14 subclones were analyzed. Schizodeme was established by comparative study of the fragments obtained from digestion of the 330-bp fragments amplified by polymerase chain reaction (PCR) from the variable regions of the minicicles, and digested by restriction endonucleases Rsa I and Hinf I. Our results show a high percentual of similarity between the restriction fragment lenght polymorphism (RFLP) for the parental strain and its clones and among these individual clones and their subclones at a level of 80 to 100%.This homology indicates a predominance of the same "principal clone" in the 21SF strain and confirms the homogeneity previously observed at biological and isozymic analysis. These results suggest the possibility that the T. cruzi strains with similar biological and isoenzymic patterns, circulating in this endemic area, are representative of one dominant clone. The presence of "principal clones" could be responsible for a predominant tropism of the parasites for specific organs and tissues and this could contribute to the pattern of clinico-pathological manifestations of Chagas's disease in one geographical area.
Resumo:
Experimental models of Schistosoma mansoni infections in mammals have contributed greatly to our understanding of the pathology and pathogenesis of infection. We consider here hepatic and extrahepatic disease in models of acute and chronic infection. Experimental schistosome infections have also contributed more broadly to our understanding of granulomatous inflammation and our understanding of Th1 versus Th2 related inflammation and particularly to Th2-mediated fibrosis of the liver.