32 resultados para Stéphane Vial
Resumo:
Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251™. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml) and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251™. Streptase™ was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase™ and Solustrep™ formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251™ activity per vial, Streptase™ (75.7 ± 5.0 units) and Streptonase™ (94.7 ± 4.6 units) had the highest activity, while Unitinase™ (31.0 ± 2.4 units) and Strek™ (32.9 ± 3.3 units) had the weakest activity. Solustrep™ (53.3 ± 2.7 units) presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.
Resumo:
A previously healthy 19 year-old male presented to the hospital with anorexia, nausea, and vomiting. Laboratory studies were significant for hypercalcemia (peak calcium value of 14.8 mg/dL) and acute kidney injury (peak serum creatinine of 2.88 mg/dL). He admitted to using a parenteral formulation of vitamins A, D and E restricted for veterinary use containing 20,000,000 IU of vitamin A; 5,000,000 IU of vitamin D3; and 6,800 IU of vitamin E per 100 mL vial. The patient stated to have used close to 300 mL of the product over the preceding year. Interestingly, the young man was not interested in the massive amounts of vitamins that the product contained; he was only after the local effects of the oily vehicle. The swelling produced by the injection resulted in a silicone-like effect, which gave the impression of bigger muscles. Nevertheless, the product was absorbed and caused hypervitaminosis. The serum level of 25(OH) vitamin D was clearly elevated at 150 ng/mL (reference range from 30 to 60 ng/mL), but in most published cases of vitamin D toxicity, serum levels have been well above 200 ng/mL. His PTH level was undetectable and other potential causes of hypercalcemia were excluded. Therefore, we posit that the severity of the hypercalcemia observed in this case was the result of a synergistic effect of vitamins A and D. The patient was treated with normal saline, furosemide and zolendronic acid, with rapid normalization of calcium levels and renal function.