33 resultados para Species tree
Resumo:
This study evaluated the photosynthetic responses of seven tropical trees of different successional groups under contrasting irradiance conditions, taking into account changes in gas exchange and chlorophyll a fluorescence. Although early successional species have shown higher values of CO2 assimilation (A) and transpiration (E), there was not a defined pattern of the daily gas exchange responses to high irradiance (FSL) among evaluated species. Cariniana legalis (Mart.) Kuntze (late secondary) and Astronium graveolens Jacq. (early secondary) exhibited larger reductions in daily-integrated CO2 assimilation (DIA) when transferred from medium light (ML) to FSL. On the other hand, the pioneer species Guazuma ulmifolia Lam. had significant DIA increase when exposed to FSL. The pioneers Croton spp. trended to show a DIA decrease around 19%, while Cytharexyllum myrianthum Cham. (pioneer) and Rhamnidium elaeocarpum Reiss. (early secondary) trended to increase DIA when transferred to FSL. Under this condition, all species showed dynamic photoinhibition, except for C. legalis that presented chronic photoinhibition of photosynthesis. Considering daily photosynthetic processes, our results supported the hypothesis of more flexible responses of early successional species (pioneer and early secondary species). The principal component analysis indicated that the photochemical parameters effective quantum efficiency of photosystem II and apparent electron transport rate were more suitable to separate the successional groups under ML condition, whereas A and E play a major role to this task under FSL condition.
Resumo:
Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.
Resumo:
Leaf CO2 assimilation (A) as a function of photosynthetic photon flux density (Q) or intercellular CO2 concentration (Ci) and chlorophyll fluorescence measurements were carried out on four tropical woody species growing in forest gap and understorey (Bauhinia forficata Link. and Guazuma ulmifolia Lam. as pioneers, and Hymenaea courbaril L. and Esenbeckia leiocarpa Engl. as non-pioneers). Chlorophyll fluorescence indicated similar acclimation capacities of photochemical apparatus to contrasting light environments irrespective to plant species. Maximum CO2 assimilation and quantum yield derived from A/Q curves indicated higher photosynthetic capacity in pioneer than in non-pioneer species in forest gap. However, the differences among species did not show a straightforward relation with their successional status regarding data derived from A/Q curves under understorey conditions. Both successional groups are able to sustain positive carbon balance under contrasting natural light availabilities, modifying photochemical and biochemical photosynthetic traits with similar phenotypic plasticity capacity.