136 resultados para Spatial plant distribution
Resumo:
Acute cases of schistosomiasis have been found on the coastal area of Pernambuco, Brazil, due to environmental disturbances and disorderly occupation of the urban areas. This study identifies and spatially marks the main foci of the snail host species, Biomphalaria glabrata on Itamaracá Island. The chaotic occupation of the beach resorts has favoured the emergence of transmission foci, thus exposing residents and tourists to the risk of infection. A database covering five years of epidemiological investigation on snails infected by Schistosoma mansoni in the island was produced with information from the geographic positioning of the foci, number of snails collected, number of snails tested positive, and their infection rate. The spatial position of the foci were recorded through the Global Positioning System (GPS), and the geographical coordinates were imported by AutoCad. The software packages ArcView and Spring were used for data processing and spatial analysis. AutoCad 2000 was used to plot the pairs of coordinates obtained from GPS. Between 1998 and 2002 5009 snails, of which 12.2% were positive for S. mansoni, were collected in Forte Beach. A total of 27 foci and areas of environmental risk were identified and spatially analyzed allowing the identification of the areas exposed to varying degrees of risk.
Resumo:
Las Lomitas, Formosa, Argentina, reported 96 cases of tegumentary leishmaniasis during 2002. The urban transmission was suggested although previous outbreaks were related with floods of the Bermejo river (BR) 50 km from the village. Phlebotomine collections were performed during March 2002 to define the spatial distribution of risk, together with satellite imaginery. The phlebotomine/trap obtained was 1679.5 in the southern BR shore, 1.1 in the periruban-rural environment and 2.3 in the northern Pilcomayo river marshes. Lutzomyia neivai was the prevalent species (91.1%) among the 2393 phlebotomine captured, and it was only found in the BR traps. The other species were L. migonei (7.9%), L. cortelezzii (0.9%), and Brumptomyia guimaraesi (0.1%). The satellite images analysis indicates that the fishing spots at the BR were significantlyoverflowed during the transmission peak, consistent with fishermen recollections. This spatial restricted flood might concentrate vectors, reservoirs, and humans in high places. Therefore, both the spatial distribution of vectors and the sensor remoting data suggests that in Las Lomitas area the higher transmission risk it is still related with the gallery forest of the BR, despite of the urban residence of the cases. The surveillance and control implications of these results are discussed.
Resumo:
Schistosomiasis prevalence and egg counts remained low one year after chemotherapy in most households in a hyperendemic rural area in northern Minas Gerais but several distinct spatial patterns could be observed in relation to IgE levels and to a lesser extent to exposure risk (TBM) and type of water supply. An inverse relationship between pre-treatment household prevalence and egg counts on the one hand and post-treatment IgE levels on the other were noted in two of the five communities. Low exposure risk was associated with the low pre-treatment infection rates in the central village but did not contribute to the decline of infection rates after chemotherapy in the study area, as indicated by the significant increase in water contact during the posttreatment period (p < 0.0001). Distance between households and the streams and socioeconomic factors were also unimportant in predicting the spatial distribution of infection. These results are consistent with the production and antiparasitic effect of high levels of IgE in Schistosoma mansoni infection.
Resumo:
Reports of triatomine infestation in urban areas have increased. We analysed the spatial distribution of infestation by triatomines in the urban area of Diamantina, in the state of Minas Gerais, Brazil. Triatomines were obtained by community-based entomological surveillance. Spatial patterns of infestation were analysed by Ripley’s K function and Kernel density estimator. Normalised difference vegetation index (NDVI) and land cover derived from satellite imagery were compared between infested and uninfested areas. A total of 140 adults of four species were captured (100 Triatoma vitticeps, 25Panstrongylus geniculatus, 8 Panstrongylus megistus, and 7 Triatoma arthurneivai specimens). In total, 87.9% were captured within domiciles. Infection by trypanosomes was observed in 19.6% of 107 examined insects. The spatial distributions ofT. vitticeps, P. geniculatus, T. arthurneivai, and trypanosome-positive triatomines were clustered, occurring mainly in peripheral areas. NDVI values were statistically higher in areas infested by T. vitticeps and P. geniculatus. Buildings infested by these species were located closer to open fields, whereas infestations of P. megistus andT. arthurneivai were closer to bare soil. Human occupation and modification of natural areas may be involved in triatomine invasion, exposing the population to these vectors.
Resumo:
For the first time, we identified the insect herbivore that induces one of the most conspicuous galls on the leaves of Caryocar brasiliense Camb. (Caryocaraceae), a widespread, typical cerrado woody plant of large economic importance. The gall inducing organism is a new and undescribed species of Eurytoma sp. (Hymenoptera, Eurytomidae). Furthermore, we recorded its spatial distribution within C. brasiliense trees. More Eurytoma galls were found on the eastern tree slope, followed the southern and northern slopes. More galls were found in the interior of the tree crown, i.e., on the proximal portion of the stems compared to the terminal portion. At the leaf level, more galls were found on the median region compared to the distal or proximal, perhaps due to the lower trichome density found in there. Leaf colonization by Eurytoma sp. may initiate at the leaf margin but after colonization reaches 50% the central portion starts to be colonized.
Resumo:
We obtained the first data on spatial distribution of a spherical galling insect (Hymenoptera, Eulophidae) at the Caryocar brasiliense Camb. (Caryocaraceae) tree level. This work was developed in two pastures in Montes Claros, Minas Gerais State, Brazil. The areas studied were: pasture 1 (in activity) and pasture 2 (abandoned pasture = savanna in recovery). We evaluated the distribution of spherical galls in: foliage orientation (slope), among leaves (border and interior of the tree crown), among leaflets (right, central, left), distal, median, and proximal as well as border, central area, and adjacent to the mid leaf vein of the leaflet, and difference between areas in 10 infested trees per area. The smaller number of spherical gall/leaflet was observed in pasture 1 than in pasture 2. More spherical galls were found on the northern in pasture 1, but in the pasture 2, the lower spherical galls were observed on the northeast than other slopes. The average number of spherical galls did not differ statistically among the three leaflets of C. brasiliense in pasture 2. However, in pasture 1, we observed highest number of spherical galls in the central leaflet. More spherical galls were found in the border than interior of the tree crown. The average number of spherical galls did not differ statistically among the longitudinal region on leaflet of C. brasiliense. The spherical gall insect preferred to colonize the leaf margin than the central portion or near mid vein on transversal regions on a leaflet.
Resumo:
Egg laying site selection by a host plant specialist leaf miner moth at two intra-plant levels in the northern Chilean Atacama Desert. The spatial distribution of the immature stages of the leaf miner Angelabella tecomae Vargas & Parra, 2005 was determined at two intra-plant levels (shoot and leaflet) on the shrub Tecoma fulva fulva (Cav.) D. Don (Bignoniaceae) in the Azapa valley, northern Chilean Atacama Desert. An aggregated spatial pattern was detected for all the immature stages along the shoot, with an age dependent relative position: eggs and first instar larvae were clumped at apex; second, third and fourth instar larvae were mostly found at intermediate positions; meanwhile the spinning larva and pupa were clumped at basis. This pattern suggests that the females select new, actively growing leaflets for egg laying. At the leaflet level, the immature stages were found more frequently at underside. Furthermore, survivorship was higher for larvae from underside mines. All these results highlight the importance of an accurate selection of egg laying site in the life history of this highly specialized leaf miner. By contrast, eventual wrong choices in the egg laying site selection may be associated with diminished larval survivorship. The importance of the continuous availability of new plant tissue in this highly human modified arid environment is discussed in relation with the observed patterns.
Resumo:
The modeling and estimation of the parameters that define the spatial dependence structure of a regionalized variable by geostatistical methods are fundamental, since these parameters, underlying the kriging of unsampled points, allow the construction of thematic maps. One or more atypical observations in the sample data can affect the estimation of these parameters. Thus, the assessment of the combined influence of these observations by the analysis of Local Influence is essential. The purpose of this paper was to propose local influence analysis methods for the regionalized variable, given that it has n-variate Student's t-distribution, and compare it with the analysis of local influence when the same regionalized variable has n-variate normal distribution. These local influence analysis methods were applied to soil physical properties and soybean yield data of an experiment carried out in a 56.68 ha commercial field in western Paraná, Brazil. Results showed that influential values are efficiently determined with n-variate Student's t-distribution.
Resumo:
Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radiation throughout the year since its topography has slopes predominantly facing opposing geographic directions. Soil data (pH, C, N, P, H+Al, Ca, Mg, K, Al, Na, sand, and silt) and plant litter data (N, K, Ca, P, and Mg) were gathered together with the geographic coordinates (to model the spatial structure) of 40 sampling units established at two sites composed of slopes predominantly facing northwest and southeast (20 units each). Soil and litter chemical properties varied more among slopes within similar geographic orientations than between the slopes facing opposing directions. Both the incident solar radiation and the spatial structure of the area were relevant in explaining the patterns detected in variation of soil and plant litter. Individual contributions of incident solar radiation to explain the variation in the properties evaluated suggested that this and other environmental factors may play a particularly relevant role in determining soil and plant litter distribution in tropical areas with heterogeneous topography. Furthermore, this study corroborates that the spatial structure of the area also plays an important role in the distribution of soil and litter within this type of landscape, which appears to be consistent with the action of water movement mechanisms in such areas.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
The objective of this work was to evaluate the spatial distribution of thrips in different crops, and the correlation between meterological parameters and the flight movements of this pest, using immunomarking. The experiment was conducted in cultivated areas, with tomato (Solanum lycopersicum), potato (Solanum tuberosum), and onion (Allium cepa); and non-cultivated areas, with weedy plants. The areas with tomato (100 days), potato (20 days), and weeds were sprayed with casein, albumin, and soy milk, respectively, to mark adult thrips; however, the areas with onion (50 days) and tomato (10 days) were not sprayed. Thrips were captured with georeferenced blue sticky traps, transferred into tubes, and identified by treatment area with the Elisa test. The dependence between the samples and the capture distance was determined using geostatistics. Meteorlogical parameters were correlated with thrips density in each area. The three protein types used for immunomarking were detected in different proportions in the thrips. There was a correlation between casein-marked thrips and wind speed. The thrips flew a maximum distance of 3.5 km and dispersed from the older (tomato) to the younger crops (potato). The immunomarking method is efficient to mark large quantities of thrips.
Resumo:
Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
Different climate models, modeling methods and carbon emission scenarios were used in this paper to evaluate the effects of future climate changes on geographical distribution of species of economic and cultural importance across the Cerrado biome. As the results of several studies have shown, there are still many uncertainties associated with these projections, although bioclimatic models are still widely used and effective method to evaluate the consequences for biodiversity of these climate changes. In this article, it was found that 90% of these uncertainties are related to methods of modeling, although, regardless of the uncertainties, the results revealed that the studied species will reduce about 78% of their geographic distribution in Cerrado. For an effective work on the conservation of these species, many studies still need to be carried out, although it is already possible to observe that climate change will have a strong influence on the pattern of distribution of these species.
Resumo:
ABSTRACTThis study aimed to analyze the vertical and diameter structure and the spatial distribution pattern of Bauhinia cheilantha in two Caatinga fragments in Sergipe, Brazil, at different regeneration stages. Thirty plots were demarcated in area I (Canindé de São Francisco and Poço Redondo), which has vegetation regeneration, and 25 plots in area II (Porto da Folha) with preserved vegetation, both having 400 m2. All B. cheilanthaindividuals had their height and circumference (circumference at breast height > 6 cm) measured. Possible differences in height and diameter at breast height were tested in the two populations by using Student’s T-test. The distribution pattern of species was calculated through Payandeh’s index. We sampled 154 B. cheilantha individuals, equivalent to 33.3% of the plots in area I and in 1,027 individuals in area II, totaling 100% frequency. Height and the diameter of the two populations were statistically different, where AI achieved all values lower than AII. The spatial distribution pattern of B. cheilantha found in both areas was aggregate, with values of 11.85 and 9.00, respectively. Thus, it became clear that the population in AII is at a more advanced successional status than AI, due to its longer conservation time.