37 resultados para Small-angle scattering.
Resumo:
Trophic relationships in fish communities are affected by the availability of resources, which in turn is affected by spatial and temporal variations throughout the year. The aims of this study were to characterize the diet of A. tetramerus in a streamlet in the north of Brazil and compare its composition in different hydrological seasons (wet and dry seasons). Collections were performed every two months from October 2011 to September 2012 with the aid of seine nets, hand net and fishing traps in the streamlet located in the Machado River drainage basin in the Rondônia state. Most of the specimens collected were quite small (< 40 mm) and had empty stomachs. Our results showed that A. tetramerus feeds on a wide variety of items of plant origin, such as algae, seeds and leaves, as well as items of animal origin, including bryozoans, crustaceans, fish scales, terrestrial insects and detritus. The data also indicated higher consumption of aquatic insects than other food items, suggesting a primarily insect-based diet. Items of plant and allochthonous origin were consumed more in the wet season than in the dry season, but there were no seasonal differences in the consumption of animal and autochthonous items.
Resumo:
Background:The QRS-T angle correlates with prognosis in patients with heart failure and coronary artery disease, reflected by an increase in mortality proportional to an increase in the difference between the axes of the QRS complex and T wave in the frontal plane. The value of this correlation in patients with Chagas heart disease is currently unknown.Objective:Determine the correlation of the QRS-T angle and the risk of induction of ventricular tachycardia / ventricular fibrillation (VT / VF) during electrophysiological study (EPS) in patients with Chagas disease.Methods:Case-control study at a tertiary center. Patients without induction of VT / VF on EPS were used as controls. The QRS-T angle was categorized as normal (0-105º), borderline (105-135º) or abnormal (135-180º). Differences between groups for continuous variables were analyzed with the t test or Mann-Whitney test, and for categorical variables with Fisher's exact test. P values < 0.05 were considered significant.Results:Of 116 patients undergoing EPS, 37.9% were excluded due to incomplete information / inactive records or due to the impossibility to correctly calculate the QRS-T angle (presence of left bundle branch block and atrial fibrillation). Of 72 patients included in the study, 31 induced VT / VF on EPS. Of these, the QRS-T angle was normal in 41.9%, borderline in 12.9% and abnormal in 45.2%. Among patients without induction of VT / VF on EPS, the QRS-T angle was normal in 63.4%, borderline in 14.6% and abnormal in 17.1% (p = 0.04). When compared with patients with normal QRS-T angle, those with abnormal angle had a fourfold higher risk of inducing ventricular tachycardia / ventricular fibrillation on EPS [odds ratio (OR) 4; confidence interval (CI) 1.298-12.325; p = 0.028]. After adjustment for other variables such as age, ejection fraction (EF) and QRS size, there was a trend for the abnormal QRS-T angle to identify patients with increased risk of inducing VT / VF during EPS (OR 3.95; CI 0.99-15.82; p = 0.052). The EF also emerged as a predictor of induction of VT / VF: for each point increase in EF, there was a 4% reduction in the rate of sustained ventricular arrhythmia on EPS.Conclusions:Changes in the QRS-T angle and decreases in EF were associated with an increased risk of induction of VT / VF on EPS.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
A key to species groups of the genus Belostoma Latreille, 1807, using new taxonomic characters are presented as well as the revision of the four species included in the denticolle group: B. denticolle Montandon, 1903, and three new species: B. orbiculatum from eastern Argentina and southern Brazil, B. retusum from eastern Argentina and B. amazonum from northern Brazil which are described and illustrated.
Resumo:
We analyzed the alimentary tract of 66 specimens of Amphisbaena munoai Klappenbach, 1969 from the Serra do Sudeste, state of Rio Grande do Sul, southern Brazil. Forty specimens (60.6%) had prey items in their gut. The diet consisted mainly of small invertebrate prey, such as termites, insect larvae and ants. The most abundant prey item was termites, found in 62.5% of the non empty stomachs. The high number of individual prey items in the majority of stomachs, the small size of the regular prey items, and the absence of gut content in specimens of A. munoai kept alive for about two days, indicate that this species forages very frequently. The predominance of fossorial prey items and the occasional records of nomadic ants lead us to suggest that A. munoai usually feeds underground, and occasionally forages on the surface.
Resumo:
We studied life history traits of females of the lizard Eurolophosaurus nanuzae (Rodrigues, 1981), an endemic species of rock outcrop habitats in southeastern Brazil. During October 2002 and 2003 we sampled three populations in sites that encompass the meridional portion of the geographic range of the species. Clutch size varied from one to three eggs, with most females carrying two eggs. Clutch size did not vary among populations, but was correlated to female body size. Only larger females produced clutches of three eggs. Females of the small-sized E. nanuzae produce eggs as large as those of medium-sized tropidurids, thus investing a considerable amount of energy to produce clutches resulting in high values of relative clutch mass.
Resumo:
The morphological characteristics of the mandible of adult Chaetophractus vellerosus (Gray, 1865) and Zaedyus pichiy (Desmarest, 1804) were studied to establish its generalized design and to identify inter- and intra- (sexual) specific differences. Morphological descriptions were complemented with the application of univariate and multivariate (analysis of correlation matrices, PCA, discriminant analysis) techniques. The mandible of both species is very similar, and is characterized by elevated condyle, well developed angular process, distinct coronoid process, tooth row which extends to the rear end of the angle between body and ramus, and unfused but firm symphysis. Although both armadillos are omnivorous, a more slender configuration of the jaw in Z. pichiy could be indicative of a better adaptation of its masticatory apparatus to insectivory. The PCA showed an almost total segregation of both species on PC1 (47.7% of the total variance), with C. vellerosus being associated to mandibles taller and with wider body and ramus. Zaedyus pichiy was characterized by heavy loadings of length parameters on PC2 (22.6% of the variance). A small degree of sexual dimorphism was found, with size-based differences in C. vellerosus (larger mandibles in females) and shape-based differences in Z. pichiy (taller mandibles in males, longer ones in females). Correlations between variables were higher in males of both species, indicating a more stable shape of the mandible than in females. The selected parameters to discriminate sexes were the body length of the mandible in C. vellerosus (correct classification: ca. 86% in males, 81% in females), and the height of the mandible at the level of the last tooth in Z. pichiy (near 85% of right assignment in both sexes). The inclusion of a new variable (body length) in the latter species improved the classification of the females to 100%. Teeth are typically 10 in C. vellerosus and 9 in Z. pichiy, but aberrancies in this basic number, such as unilateral or bilateral extra or fewer teeth, are common.