62 resultados para Single-gene
Resumo:
Abstract: Dermatosparaxis is an autosomal recessive disorder of connective tissue; the disorder is clinically characterized by skin fragility and hyperextensibility. Dermatosparaxis in White Dorper sheep is caused by a single nucleotide polymorphism (SNP) (c.421G>T) in the ADAM metalloproteinase with thrombospondin type 1 motif, 2 (ADAMTS2) gene. The aim of this study was to investigate the prevalence of this SNP in a White Dorper herd in São Paulo state, Brazil. In this study, we collected blood DNA samples from 303 White Dorper sheep and performed polymerase chain reaction to amplify the SNP region. The samples were sequenced to determine the presence of the SNP in the ADAMTS2 gene. The SNP prevalence in the studied population was 15.5%; this finding indicates that more effective control measures should be used to prevent the inheritance of SNP c.421G>T in the ADAMTS2 gene in Brazilian White Dorper herds.
Resumo:
We describe the identification of point mutations in the androgen receptor gene in five Brazilian patients with female assignment and behavior. The eight exons of the gene were amplified by the polymerase chain reaction (PCR) and analyzed for single-strand conformation polymorphism (SSCP) to detect the mutations. Direct sequencing of the mutant PCR products demonstrated single transitions in three of these cases: G®A in case 1, within exon C, changing codon 615 from Arg to His; G®A in case 2, within exon E, changing codon 752 from Arg to Gln, and C®T in case 3, within exon B, but without amino acid change.
Resumo:
We have developed a procedure for nonradioactive single strand conformation polymorphism analysis and applied it to the detection of point mutations in the human tumor suppressor gene p53. The protocol does not require any particular facilities or equipment, such as radioactive handling, large gel units for sequencing, or a semiautomated electrophoresis system. This technique consists of amplification of DNA fragments by PCR with specific oligonucleotide primers, denaturation, and electrophoresis on small neutral polyacrylamide gels, followed by silver staining. The sensitivity of this procedure is comparable to other described techniques and the method is easy to perform and applicable to a variety of tissue specimens.
Resumo:
The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.
Resumo:
Gene therapy for hypertension is needed for the next generation of antihypertensive drugs. Current drugs, although effective, have poor compliance, are expensive and short-lasting (hours or one day). Gene therapy offers a way to produce long-lasting antihypertensive effects (weeks, months or years). We are currently using two strategies: a) antisense oligodeoxynucleotides (AS-ODN) and b) antisense DNA delivered in viral vectors to inhibit genes associated with vasoconstrictive properties. It is not necessary to know all the genes involved in hypertension, since many years of experience with drugs show which genes need to be controlled. AS-ODN are short, single-stranded DNA that can be injected in naked form or in liposomes. AS-ODN, targeted to angiotensin type 1 receptors (AT1-R), angiotensinogen (AGT), angiotensin converting enzyme, and ß1-adrenergic receptors effectively reduce hypertension in rat models (SHR, 2K-1C) and cold-induced hypertension. A single dose is effective up to one month when delivered with liposomes. No side effects or toxic effects have been detected, and repeated injections can be given. For the vector, adeno-associated virus (AAV) is used with a construct to include a CMV promoter, antisense DNA to AGT or AT1-R and a reporter gene. Results in SHR demonstrate reduction and slowing of development of hypertension, with a single dose administration. Left ventricular hypertrophy is also reduced by AAV-AGT-AS treatment. Double transgenic mice (human renin plus human AGT) with high angiotensin II causing high blood pressure, treated with AAV-AT1-R-AS, show a normalization of blood pressure for over six months with a single injection of vector. We conclude that ODNs will probably be developed first because they can be treated like drugs for the treatment of hypertension with long-term effects. Viral vector delivery needs more engineering to be certain of its safety, but one day may be used for a very prolonged control of blood pressure.
Resumo:
We are using molecular, biochemical, and genetic approaches to study the structural and regulatory genes controlling the assimilation of inorganic nitrogen into the amino acids glutamine, glutamate, aspartate and asparagine. These amino acids serve as the principal nitrogen-transport amino acids in most crop and higher plants including Arabidopsis thaliana. We have begun to investigate the regulatory mechanisms controlling nitrogen assimilation into these amino acids in plants using molecular and genetic approaches in Arabidopsis. The synthesis of the amide amino acids glutamine and asparagine is subject to tight regulation in response to environmental factors such as light and to metabolic factors such as sucrose and amino acids. For instance, light induces the expression of glutamine synthetase (GLN2) and represses expression of asparagine synthetase (ASN1) genes. This reciprocal regulation of GLN2 and ASN1 genes by light is reflected at the level of transcription and at the level of glutamine and asparagine biosynthesis. Moreover, we have shown that the regulation of these genes is also reciprocally controlled by both organic nitrogen and carbon metabolites. We have recently used a reverse genetic approach to study putative components of such metabolic sensing mechanisms in plants that may be conserved in evolution. These components include an Arabidopsis homolog for a glutamate receptor gene originally found in animal systems and a plant PII gene, which is a homolog of a component of the bacterial Ntr system. Based on our observations on the biology of both structural and regulatory genes of the nitrogen assimilatory pathway, we have developed a model for metabolic control of the genes involved in the nitrogen assimilatory pathway in plants.
Resumo:
In addition to the mutations that underlie most cases of the multiple endocrine neoplasia type 1 (MEN1) syndrome, somatic mutations of the MEN1 gene have also been described in sporadic tumors like gastrinomas, insulinomas and bronchial carcinoid neoplasm. We examined exon 2 of this gene, where most of the mutations have been described, in 148 endocrine and nonendocrine sporadic tumors. DNA was obtained by phenol/chloroform extraction and ethanol precipitation from 92 formalin-fixed, paraffin-embedded samples, and from 40 fresh tumor tissue samples. We used 5 pairs of primers to encompass the complete coding sequence of exon 2 of the MEN1 gene that was screened by the polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) technique in 78 sporadic thyroid cancers: 28 follicular adenomas, 35 papillary carcinomas, 14 follicular carcinomas, and 1 anaplastic thyroid carcinoma. We also examined 46 adrenal lesions (3 hyperplasias, 3 adenomas and 35 adrenocortical carcinomas, 2 pheochromocytomas, 2 ganglioneuroblastomas, and 1 lymphoma) and 24 breast cancers (6 noninvasive, 16 infiltrating ductal, and 2 invasive lobular tumors). The PCR product of 5 tumors suspected to present band shifts by SSCP was cloned. Direct sense and antisense sequencing did not identify mutations. These results suggest that the MEN1 gene is not important in breast, thyroid or adrenal sporadic tumorigenesis. Because the frequency of mutations varies significantly among tumor subgroups and allelic deletions are frequently observed at 11q13 in thyroid and adrenal cancers, another tumor suppressor gene residing in this region is likely to be involved in the tumorigenesis of these neoplasms.
Resumo:
There is strong evidence that the patched (PTCH) gene is a gene for susceptibility to the nevoid basal cell carcinoma syndrome. PTCH has also been shown to mutate in both familial and sporadic basal cell carcinomas. However, mutations of the gene seem to be rare in squamous cell carcinomas. In order to characterize the role of the gene in the broader spectrum of sporadic skin malignant and pre-malignant lesions, we performed a polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) analysis of genomic DNA extracted from 105 adult patients (46 females and 59 males). There were 66 patients with basal cell carcinomas, 30 with squamous cell carcinomas, 2 with malignant melanomas and 7 patients with precancerous lesions. Two tissue samples were collected from each patient, one from the central portion of the tumor and another from normal skin. Using primers that encompass the entire exon 1, exon 8 and exon 18, where most of the mutations have been detected, we were unable to demonstrate any band shift. Three samples suspected to present aberrant migrating bands were excised from the gel and sequenced directly. In addition, we sequenced 12 other cases, including tumors and corresponding normal samples. A wild-type sequence was found in all 15 cases. Although our results do not exclude the presence of clonal alterations of the PTCH gene in skin cancers or mutations in other exons that were not screened, the present data do not support the presence of frequent mutations reported for non-melanoma skin cancer of other populations.
Resumo:
Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns), the alpha-globin genes are duplicate (alpha2 and alpha1) and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP). Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene) submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem™ and GenePhor™, Amersham Biosciences), different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem™ and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.
Resumo:
The human androgen receptor (AR) gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR) may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T) in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.
Resumo:
CDKN2A has been implicated as a melanoma susceptibility gene in some kindreds with a family history of this disease. Mutations in CDKN2A may produce an imbalance between functional p16ink4a and cyclin D causing abnormal cell growth. We searched for germline mutations in this gene in 22 patients with clinical criteria of hereditary cancer (early onset, presence of multiple primary melanoma or 1 or more first- or second-degree relatives affected) by secondary structural content prediction, a mutation scanning method that relies on the propensity for single-strand DNA to take on a three-dimensional structure that is highly sequence dependent, and sequencing the samples with alterations in the electrophoretic mobility. The prevalence of CDKN2A mutation in our study was 4.5% (1/22) and there was a correlation between family history and probability of mutation detection. We found the P48T mutation in 1 patient with 2 melanoma-affected relatives. The patient descends from Italian families and this mutation has been reported previously only in Italian families in two independent studies. This leads us to suggest the presence of a mutational "hotspot" within this gene or a founder mutation. We also detected a high prevalence (59.1%) of polymorphisms, mainly alleles 500 C/G (7/31.8%) or 540 C/T (6/27.3%), in the 3' untranslated region of exon 3. This result reinforces the idea that these rare polymorphic alleles have been significantly associated with the risk of developing melanoma.
Resumo:
We examined the association of three established single nucleotide polymorphisms, IVS1-397T>C, IVS1-351A>G, and +261G>C, in the ESR1 gene with the prevalence and severity of coronary atherosclerosis in a southern Brazilian population of European ancestry. Three hundred and forty-one subjects (127 women and 214 men) with coronary artery disease (CAD) were classified as having significant disease (CAD+ patient group) when they showed 60% or more luminal stenosis in at least one coronary artery or major branch segment at angiography; patients with 10% or less luminal stenosis were considered to have minimal CAD (CAD- patient group). The control sample consisted of 142 subjects (79 women and 63 men) without significant disease, in whom coronary angiography to rule out the presence of asymptomatic CAD was not performed. The polymorphisms were investigated by polymerase chain reaction followed by restriction analyses. In the male sample, the +261G>C*C allele was more frequent in CAD+ than CAD- subjects (8 versus 1%, P = 0.024). Homozygosity for the C allele of the IVS1-397T>C polymorphism was also significantly associated with increased CAD severity (OR: 2.99; 95% CI = 1.35-6.63; P = 0.007). In agreement with previous findings, these results suggest that the IVS1-397T>C*C allele was associated with CAD severity independent of gender, whereas the association of the +261G>C variant with CAD was observed in males only. The relation between ESR1 variation and CAD may influence clinical decisions such as the use of hormone therapy, and additionally will be helpful to identify the genetic susceptibility determinants of cardiovascular disease development.
Resumo:
Leber's hereditary optic neuropathy (LHON) is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity). The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G) has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid). We looked for base conservation using DNA star software (MEGALIGN program) as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold) revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%). This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.
Resumo:
Endemic pemphigus foliaceus (EPF) is an autoimmune bullous skin disease characterized by acantholysis and antibodies against a desmosomal protein, desmoglein 1. Genetic and environmental factors contribute to development of this multifactorial disease. HLA class II and some cytokine gene polymorphisms are the only genetic markers thus far known to be associated with susceptibility to or protection from EPF. The cytotoxic T-lymphocyte antigen-4 gene (CTLA4) encodes a key immunoreceptor molecule that regulates and inhibits T-cell proliferation. It participates in the regulatory process controlling autoreactivity and therefore has been considered a strong candidate gene in autoimmune diseases. In the search for genes that might influence EPF pathogenesis, we analyzed variants of the CTLA4 gene in a sample of 118 patients and 291 controls from a Brazilian population. This is the first study investigating the possible role of polymorphisms of the 2q33 chromosomal region in differential susceptibility to pemphigus foliaceus. Promoter region and exon 1 single nucleotide polymorphisms -318 (C,T) and 49 (A,G) were genotyped using sequence-specific oligonucleotide probes after amplification by the polymerase chain reaction. The allelic and genotypic frequencies did not differ significantly between the patient and the control groups (-318T: 9.8 and 10.9%, 49G: 33.0 and 35.2% were the allelic frequencies in patients and controls, respectively). In addition, no significant difference was found when the patient and control population samples were stratified by the presence of HLA-DRB1 alleles. We conclude that the CTLA4 -318 (C,T) and 49 (A,G) polymorphisms do not play a major role in EPF development.
Resumo:
Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.