38 resultados para SiPM Scintillatori Wavelength shifter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectral sensitivities of visual systems are specified as the reciprocals of the intensities of light (quantum fluxes) needed at each wavelength to elicit the same criterion amplitude of responses. This review primarily considers the methods that have been developed for electrophysiological determinations of criterion amplitudes of slow-wave responses from single retinal cells. Traditional flash methods can require tedious dark adaptations and may yield erroneous spectral sensitivity curves which are not seen in such modifications as ramp methods. Linear response methods involve interferometry, while constant response methods involve manual or automatic adjustments of continuous illumination to keep response amplitudes constant during spectral scans. In DC or AC computerized constant response methods, feedback to determine intensities at each wavelength is derived from the response amplitudes themselves. Although all but traditional flash methods have greater or lesser abilities to provide on-line determinations of spectral sensitivities, computerized constant response methods are the most satisfactory due to flexibility, speed and maintenance of a constant adaptation level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy consists of the uptake of a photosensitizing dye, often a porphyrin, by tumor tissue and subsequent irradiation of the tumor with visible light of an appropriate wavelength matched to the absorption spectrum of the photosensitizing dye. This class of molecules produces reactive oxygen species when activated by light, resulting in a direct or indirect cytotoxic effect on the target cells. Photodynamic therapy has been used in the treatment of cancer but the technology has a potential for the treatment of several disease conditions mainly because of its selectivity. However, it is not clear why the porphyrins are retained preferentially by abnormal tissue. This paper describes a study of the effect of the association of porphyrin and visible light on two mouse fibroblast cell lines: A31, normal cells and B61, an EJ-ras transformed variant of A31. Two water-soluble porphyrins were used, a positively charged one, tetra(N-methyl-4-pyridyl)porphyrin chloride, and a negatively charged one, tetra(4-sulfonatophenyl)porphyrin-Na salt (TPPS4) in order to assess the effect on cell survival. The results suggest that the B61 cell line is more sensitive to incubation with the anionic porphyrin (TPPS4) followed by light irradiation and that the anionic porphyrin is more efficient in killing the cells than the cationic porphyrin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decades, the incidence of ultraviolet B (UVB)-related skin problems has been increasing. Damages induced by UVB radiation are related to mutations that occur as a result of direct DNA damage and/or the production of reactive oxygen species. We investigated the anti-oxidant effects of a Polygonum multiflorum thumb extract against skin damage induced by UVB irradiation. Female SKH-1 hairless mice were divided into three groups: control (N = 7), distilled water- (N = 10), and P. multiflorum extract-treated (PM, N = 10) groups. The PM (10 g) was extracted with 100 mL distilled water, cryo-dried and 9.8 g was obtained. The animals received a topical application of 500 µL distilled water or PM extract (1, 2, 4, 8, and 16%, w/v, dissolved in distilled water) for 30 min after UVB irradiation (wavelength 280-320 nm, 300 mJ/cm²; 3 min) of the dorsal kin for 14 days, and skin immunohistochemistry and Cu,Zn-superoxide dismutase (SOD1) activity were determined. SOD1 immunoreactivity, its protein levels and activities in the skin were significantly reduced by 70% in the distilled water-treated group after UVB irradiation compared to control. However, in the PM extract-treated groups, SOD1 immunoreactivity and its protein and activity levels increased in a dose-dependent manner (1-16%, w/v, PM extract) compared to the distilled water-treated group. SOD1 protein levels and activities in the groups treated with 8 and 16%, w/v, PM extract recovered to 80-90% of the control group levels after UVB. These results suggest that PM extract strongly inhibits the destruction of SOD1 by UV radiation and probably contains anti-skin photoaging agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical stimulation has been used for more than 100 years in neuroscientific and biomedical research as a powerful tool for controlled perturbations of neural activity. Despite quickly driving neuronal activity, this technique presents some important limitations, such as the impossibility to activate or deactivate specific neuronal populations within a single stimulation site. This problem can be avoided by pharmacological methods based on the administration of receptor ligands able to cause specific changes in neuronal activity. However, intracerebral injections of neuroactive molecules inherently confound the dynamics of drug diffusion with receptor activation. Caged compounds have been proposed to circumvent this problem, for spatially and temporally controlled release of molecules. Caged compounds consist of a protecting group and a ligand made inactive by the bond between the two parts. By breaking this bond with light of an appropriate wavelength, the ligand recovers its activity within milliseconds. To test these compounds in vivo, we recorded local field potentials (LFPs) from the cerebral cortex of anesthetized female mice (CF1, 60-70 days, 20-30 g) before and after infusion with caged γ-amino-butyric-acid (GABA). After 30 min, we irradiated the cortical surface with pulses of blue light in order to photorelease the caged GABA and measure its effect on global brain activity. Laser pulses significantly and consistently decreased LFP power in four different frequency bands with a precision of few milliseconds (P < 0.000001); however, the inhibitory effects lasted several minutes (P < 0.0043). The technical difficulties and limitations of neurotransmitter photorelease are presented, and perspectives for future in vivo applications of the method are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm2) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been an increase in investment in research on new sources of natural pigments for food application. Some cyanobacteria can change the structures responsible for light harvesting and cellular processes according to the wavelength and light intensity. This phenomenon has been described as complementary chromatic adaptation. The present study aimed to investigate the growth of Arthrospira platensis using different light qualities, irradiance, and wavelength by evaluating the production of biomass, proteins, and phycobiliproteins. The occurrence of the chromatic adaptation phenomenon in this cyanobacterium was also investigated. The microorganism used in this study, A. platensis, was grown in a Zarrouk medium under three irradiance levels, 50, 100, and 150 μmol fotons.m–2.s–1 with illumination provided by white and green fluorescent lamps. The condition of 150 µmol fotons.m–2.s–1 white light was the one that promoted the highest biomass production of A. platensis cultures (2115.24 mg.L–1). There was no difference in the production of total protein and total phycobiliproteins under the studied conditions. It is likely that the large supply of nitrogen in the Zarrouk medium was sufficient for cell growth and maintenance, and it supplied the production of accessory pigments composed of protein. Finally, there was no evidence of the complementary chromatic adaptation phenomenon in A. platensis cultivated under green light. Moreover, this condition did not increase phycocyanin production.