44 resultados para Shrunken promoter
Resumo:
Tools for the genetic manipulation of Trypanosoma cruzi are largely unavailable, although several vectors for transfection of epimastigotes and expression of foreign or recombinant genes have been developed. We have previously constructed several plasmid vectors in which recombinant genes are expressed in T. cruzi using the rRNA promoter. In this report, we demonstrate that one of these vectors can simultaneously mediate expression of neomycin phosphotransferase and green fluorescent protein when used to stably transfect cultured epimastigotes. These stably transfected epimastigotes can be selected and cloned as unique colonies on solid medium. We describe a simple colony PCR approach to the screening of these T. cruzi colonies for relevant genes. Thus, the methodologies outlined herein provide important new tools for the genetic dissection of this important parasite.
Resumo:
Previous studies carried out with Sm14 in experimental vaccination against Schistosoma mansoni or Fasciola hepatica infections were performed with recombinant Sm14 (rSm14) produced in Escherichia coli by the pGEMEX system (Promega). The rSm14 was expressed as a 40 kDa fusion protein with the major bacteriophage T7 capsid protein. Vaccination experiments with this rSm14 in animal models resulted in consistent high protective activity against S. mansoni cercariae challenge and enabled rSm14 to be included among the vaccine antigens endorsed by the World Health Organization for phase I/II clinical trials. Since the preparation of pGEMEX based rSm14 is time consuming and results in low yield for large scale production, we have tested other E. coli expression systems which would be more suitable for scale up and downstream processing. We expressed two different 6XHis-tagged Sm14 fusion proteins in a T7 promoter based plasmids. The 6XHis-tag fusions allowed rapid purification of the recombinant proteins through a Ni+2-charged resin. The resulted recombinant 18 and 16 kDa proteins were recognized by anti-Sm14 antibodies and also by antiserum against adult S. mansoni soluble secreted/excreted proteins in Western-Blot. Both proteins were also protective against S. mansoni cercariae infection to the same extent as the rSm14 expressed by the pGEMEX system.
Resumo:
Treatment of cancer using gene therapy is based on adding a property to the cell leading to its elimination. One possibility is the use of suicide genes that code for enzymes that transform a pro-drug into a cytotoxic product. The most extensively used is the herpes simplex virus thymidine kinase (TK) gene, followed by administration of the antiviral drug ganciclovir (GCV). The choice of the promoter to drive the transcription of a transgene is one of the determinants of a given transfer vector usefulness, as different promoters show different efficiencies depending on the target cell type. In the experiments presented here, we report the construction of a recombinant adenovirus carrying TK gene (Ad-TK) driven by three strong promoters (P CMV IE, SV40 and EN1) and its effectiveness in two cell types. Human HeLa and mouse CCR2 tumor cells were transduced with Ad-TK and efficiently killed after addition of GCV. We could detect two sizes of transcripts of TK gene, one derived from the close together P CMV IE/SV40 promoters and the other from the 1.5 Kb downstream EN1 promoter. The relative amounts of these transcripts were different in each cell type thus indicating a higher flexibility of this system.
Resumo:
hilA gene promoter, component of the Salmonella Pathogenicity Island 1, has been found in Salmonella serovar Typhimurium, being important for the regulation of type III secretion apparatus genes. We detected hilA gene sequences in Salmonella serovars Typhi, Enteritidis, Choleraesuis, Paratyphi A and B, and Pullorum, by polymerase chain reaction (PCR) and hybridization techniques. The primers to carry out PCR were designed according to hilA sequence. A low stringency hybridization with the probe pVV441 (hilA open-reading-frame plasmid) was carried out. To find hilA gene sequences in other Salmonella sp. suggest that these serovars could have similar sequences of this kind of virulence genes.
Resumo:
Schistosomes undergo various morphological and metabolic changes during their development, reflected in a finely tuned regulation of protein and/or gene expression. The mechanisms involved in the control of gene expression during the development of the parasite are not understood. Two actin genes had been previously cloned and observed to be differentially expressed during the maturation of the parasite. The SmAct gene contains four putative cis-regulatory elements (TATA-, CCAAT-, E- and CArG-boxes). Our objective was to investigate in greater detail the expression pattern of two actin genes and verify if the binding of nuclear proteins to the promoter elements of SmAct correlated with the expression profile observed. We detected little variation in the expression of actin genes during the first seven days of schistosomula culture in vitro. However, we observed significantly higher levels of expression in males compared to female adults. CArG and CCAAT elements bound to a greater extent and formed distinct complexes with male in comparison to female nuclear extracts. In contrast, female extracts bound weakly to the E-box probe while no binding was observed with male extracts. Taken together these results describe cis-acting elements that appear to be involved in sexually regulated gene expression in Schistosoma mansoni.
Resumo:
Stem cell factor (SCF) is a major mast cell growth factor, which could be involved in the local increase of mast cell number in the asthmatic airways. In vivo, SCF expression increases in asthmatic patients and this is reversed after treatment with glucocorticoids. In vitro in human lung fibroblasts in culture, IL-1beta, a pro-inflammatory cytokine, confirms this increased SCF mRNA and protein expression implying the MAP kinases p38 and ERK1/2 very early post-treatment, and glucocorticoids confirm this decrease. Surprisingly, glucocorticoids potentiate the IL-1beta-enhanced SCF expression at short term treatment, implying increased SCF mRNA stability and SCF gene transcription rate. This potentiation involves p38 and ERK1/2. Transfection experiments with the SCF promoter including intron1 also confirm this increase and decrease of SCF expression by IL-1beta and glucocorticoids, and the potentiation by glucocorticoids of the IL-1beta-induced SCF expression. Deletion of the GRE or kappaB sites abolishes this potentiation, and the effect of IL-1beta or glucocorticoids alone. DNA binding of GR and NF-kappaB are also demonstrated for these effects. In conclusion, this review concerns new mechanisms of regulation of SCF expression in inflammation that could lead to potential therapeutic strategy allowing to control mast cell number in the asthmatic airways.
Resumo:
Resistance in Mycobacterium tuberculosis to isoniazid (INH) is caused by mutations in the catalase-peroxidase gene (katG) , and within the inhA promoter and/or in structural gene. A small percentage (~ 10%) of INH-resistant strains do not present mutations in both of these loci. Other genes have been associated with INH resistance including the gene encoding for NADH dehydrogenase (ndh) . Here we report the detection of two ndh locus mutations (CGT to TGT change in codon 13 and GTG to GCG change in codon 18) by analyzing 23 INH-resistant and in none of 13 susceptible isolates from Brazilian tuberculosis patients. We also detected two isolates without a mutation in ndh, or any of the other INH resistance-associated loci examined, suggesting the existence of additional, as yet to be described, INH resistance mechanisms.
Resumo:
Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.
Resumo:
In this study, we evaluated the hepatitis B virus (HBV) genotype distribution and HBV genomic mutations among a group of human immunodeficiency virus-HBV co-infected patients from an AIDS outpatient clinic in São Paulo. HBV serological markers were detected by commercially available enzyme immunoassay kits. HBV DNA was detected using in-house nested polymerase chain reaction and quantified by Cobas Amplicor. HBV genotypes and mutations in the basal core promoter (BCP)/pre-core/core regions and surface/polymerase genes were determined by sequencing. Among the 59 patients included in this study, 55 reported prior use of lamivudine (LAM) or tenofovir. HBV DNA was detected in 16/22 patients, with a genotype distribution of A (n = 12,75%), G (n = 2,13%), D (n = 1,6%) and F (n = 1,6%). The sequence data of the two patients infected with genotype G strongly suggested co-infection with genotype A. In 10 patients with viremia, LAM-resistance mutations in the polymerase gene (rtL180M + rtM204V and rtV173L + rtL180M + rtM204V) were found, accompanied by changes in the envelope gene (sI195M, sW196L and sI195M/sE164D). Mutations in the BCP and pre-core regions were identified in four patients. In conclusion, genotype G, which is rarely seen in Brazil, was observed in the group of patients included in our study. A high prevalence of mutations associated with LAM-resistance and mutations associated with anti-HBs resistance were also found among these patients.
Resumo:
The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM.
Resumo:
Drug resistance is one of the major concerns regarding tuberculosis (TB) infection worldwide because it hampers control of the disease. Understanding the underlying mechanisms responsible for drug resistance development is of the highest importance. To investigate clinical data from drug-resistant TB patients at the Tropical Diseases Hospital, Goiás (GO), Brazil and to evaluate the molecular basis of rifampin (R) and isoniazid (H) resistance in Mycobacterium tuberculosis. Drug susceptibility testing was performed on 124 isolates from 100 patients and 24 isolates displayed resistance to R and/or H. Molecular analysis of drug resistance was performed by partial sequencing of the rpoB and katGgenes and analysis of the inhA promoter region. Similarity analysis of isolates was performed by 15 loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing. The molecular basis of drug resistance among the 24 isolates from 16 patients was confirmed in 18 isolates. Different susceptibility profiles among the isolates from the same individual were observed in five patients; using MIRU-VNTR, we have shown that those isolates were not genetically identical, with differences in one to three loci within the 15 analysed loci. Drug-resistant TB in GO is caused by M. tuberculosis strains with mutations in previously described sites of known genes and some patients harbour a mixed phenotype infection as a consequence of a single infective event; however, further and broader investigations are needed to support our findings.
Resumo:
Studies on human genetic variations are a useful source of knowledge about human immunodeficiency virus (HIV)-1 infection. The Langerin protein, found at the surface of Langerhans cells, has an important protective role in HIV-1 infection. Differences in Langerin function due to host genetic factors could influence susceptibility to HIV-1 infection. To verify the frequency of mutations in the Langerin gene, 118 samples from HIV-1-infected women and 99 samples from HIV-1-uninfected individuals were selected for sequencing of the promoter and carbohydrate recognition domain (CRD)-encoding regions of the Langerin gene. Langerin promoter analysis revealed two single nucleotide polymorphisms (SNPs) and one mutation in both studied groups, which created new binding sites for certain transcription factors, such as NFAT5, HOXB9.01 and STAT6.01, according to MatInspector software analysis. Three SNPs were observed in the CRD-encoding region in HIV-1-infected and uninfected individuals: p.K313I, c.941C>T and c.983C>T. This study shows that mutations in the Langerin gene are present in the analysed populations at different genotypic and allelic frequencies. Further studies should be conducted to verify the role of these mutations in HIV-1 susceptibility.
Resumo:
Drug-resistant tuberculosis (TB) threatens global TB control and is a major public health concern in several countries. We therefore developed a multiplex assay (LINE-TB/MDR) that is able to identify the most frequent mutations related to rifampicin (RMP) and isoniazid (INH) resistance. The assay is based on multiplex polymerase chain reaction, membrane hybridisation and colorimetric detection targeting of rpoB and katG genes, as well as the inhA promoter, which are all known to carry specific mutations associated with multidrug-resistant TB (MDR-TB). The assay was validated on a reference panel of 108 M. tuberculosis isolates that were characterised by the proportion method and by DNA sequencing of the targets. When comparing the performance of LINE-TB/MDR with DNA sequencing, the sensitivity, specificity and agreement were 100%, 100% and 100%, respectively, for RMP and 77.6%, 90.6% and 88.9%, respectively, for INH. Using drug sensibility testing as a reference standard, the performance of LINE-TB/MDR regarding sensitivity, specificity and agreement was 100%, 100% and 100% (95%), respectively, for RMP and 77%, 100% and 88.7% (82.2-95.1), respectively, for INH. LINE-TB/MDR was compared with GenoType MTBDRplus for 65 isolates, resulting in an agreement of 93.6% (86.7-97.5) for RIF and 87.4% (84.3-96.2) for INH. LINE-TB/MDR warrants further clinical validation and may be an affordable alternative for MDR-TB diagnosis.
Resumo:
Natural resistance-associated macrophage protein 1/solute carrier family 11 member 1 gene (Nramp1/Slc11a1) is a gene that controls the susceptibility of inbred mice to intracellular pathogens. Polymorphisms in the human Slc11a1/Nramp1 gene have been associated with host susceptibility to leprosy. This study has evaluated nine polymorphisms of the Slc11a1/Nramp1 gene [(GT)n, 274C/T, 469+14G/C, 577-18G/A, 823C/T, 1029 C/T, 1465-85G/A, 1703G/A, and 1729+55del4] in 86 leprosy patients (67 and 19 patients had the multibacillary and the paucibacillary clinical forms of the disease, respectively), and 239 healthy controls matched by age, gender, and ethnicity. The frequency of allele 2 of the (GT)n polymorphism was higher in leprosy patients [p = 0.04, odds ratio (OR) = 1.49], whereas the frequency of allele 3 was higher in the control group (p = 0.03; OR = 0.66). Patients carrying the 274T allele (p = 0.04; OR = 1.49) and TT homozygosis (p = 0.02; OR = 2.46), such as the 469+14C allele (p = 0.03; OR = 1.53) of the 274C/T and 469+14G/C polymorphisms, respectively, were more frequent in the leprosy group. The leprosy and control groups had similar frequency of the 577-18G/A, 823C/T, 1029C/T, 1465-85G/A, 1703G/A, and 1729+55del4 polymorphisms. The 274C/T polymorphism in exon 3 and the 469+14G/C polymorphism in intron 4 were associated with susceptibility to leprosy, while the allele 2 and 3 of the (GT)n polymorphism in the promoter region were associated with susceptibility and protection to leprosy, respectively.