44 resultados para Shock waves
Resumo:
We have shown that morphine has an anticonvulsive effect against maximal electroconvulsive shock (MES) in mice, and this effect is antagonized by histamine H1-receptor antagonists. Brain histamine is localized both in neurons and in mast cells, and morphine is known to enhance the turnover of neuronal histamine and to release histamine from mast cells. In the present experiments, compound 48/80 was injected chronically (0.5 mg/kg on day 1, 1 mg/kg on day 2, 2 mg/kg on day 3, 3 mg/kg on day 4, and 4 mg/kg on day 5, twice daily, ip) to deplete mast cell contents. Morphine (0.001-10 mg/kg, ip; N = 20) produced a dose-dependent anticonvulsive effect against MES seizure in mice with non-depleted mast cells, whereas it did not exert any anticonvulsive effect in mice with depleted mast cells. These results indicate that morphine produces its anticonvulsive effect against maximal electroconvulsive shock in mice by liberating histamine from mast cells.
Resumo:
We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM) sleep, known as sawtooth waves (STW). These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG). On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.
Resumo:
Hormone replacement therapy (HRT) reduces cardiovascular risks, although the initiation of therapy may be associated with transient adverse ischemic and thrombotic events. Antibodies against heat shock protein (Hsp) and oxidized low density lipoprotein (LDL) have been found in atherosclerotic lesions and plasma of patients with coronary artery disease and may play an important role in the pathogenesis of atherosclerosis. The aim of the present study was to assess the effects of HRT on the immune response by measuring plasma levels of antibodies against Hsp 65 and LDL with a low and high degree of copper-mediated oxidative modification of 20 postmenopausal women before and 90 days after receiving orally 0.625 mg equine conjugate estrogen plus 2.5 mg medroxyprogesterone acetate per day. HRT significantly increased antibodies against Hsp 65 (0.316 ± 0.03 vs 0.558 ± 0.11) and against LDL with a low degree of oxidative modification (0.100 ± 0.01 vs 0.217 ± 0.02) (P<0.05 and P<0.001, respectively, ANOVA). The hormone-mediated immune response may trigger an inflammatory response within the vessel wall and potentially increase plaque burden. Whether or not this immune response is temporary or sustained and deleterious requires further investigation.
Resumo:
The serologic assay is an important tool in the diagnosis of leishmaniasis. One of the most commonly used tests is enzyme-linked immunosorbent assay (ELISA). Since total Leishmania promastigotes are used as antigen in the routine assay, false-positive reactions are frequent due to cross-reaction with sera from other diseases, mainly Chagas' disease. Therefore, an antigen that determines less cross-reactivity has been pursued for the serodiagnosis of leishmaniasis. In the present study we analyzed the use of recombinant Leishmania infantum heat shock protein (Hsp) 83 in ELISA for the serodiagnosis of cutaneous (N = 12) and mucocutaneous leishmaniasis (N = 14) and we observed the presence of anti-L. infantum Hsp 83 antibodies in all samples as well as anti-Leishmania total antigen antibodies. When cross-reactivity was tested, chronic Chagas' disease patients (N = 10) did not show any reactivity. Therefore, we consider this L. infantum Hsp 83 to be a good antigen for routine use for serodiagnosis of tegumentary leishmaniasis.
Resumo:
We evaluated the recovery of cardiovascular function after transient cardiogenic shock. Cardiac tamponade was performed for 1 h and post-shock data were collected in 5 domestic large white female pigs (43 ± 5 kg) for 6 h. The control group (N = 5) was observed for 6 h after 1 h of resting. During 1 h of cardiac tamponade, experimental animals evolved a low perfusion status with a higher lactate level (8.0 ± 2.2 vs 1.9 ± 0.9 mEq/L), lower standard base excess (-7.3 ± 3.3 vs 2.0 ± 0.9 mEq/L), lower urinary output (0.9 ± 0.9 vs 3.0 ± 1.4 mL·kg-1·h-1), lower mixed venous saturation, higher ileum partial pressure of CO2-end tidal CO2 (EtCO2) gap and a lower cardiac index than the control group. Throughout the 6-h recovery phase after cardiac tamponade, tamponade animals developed significant tachycardia with preserved cardiac index, resulting in a lower left ventricular stroke work, suggesting possible myocardial dysfunction. Vascular dysfunction was present with persistent systemic hypotension as well as persistent pulmonary hypertension. In contrast, oliguria, hyperlactatemia and metabolic acidosis were corrected by the 6th hour. The inflammatory characteristics were an elevated core temperature and increased plasma levels of interleukin-6 in the tamponade group compared to the control group. We conclude that cardiovascular recovery after a transient and severe low flow systemic state was incomplete. Vascular dysfunction persisted up to 6 h after release of tamponade. These inflammatory characteristics may also indicate that inflammatory activation is a possible pathway involved in the pathogenesis of cardiogenic shock.
Resumo:
Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 µg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.
Resumo:
High mobility group box 1 (HMGB1) was discovered as a novel late-acting cytokine that contributes to acute lung injury (ALI). However, the contribution of HMGB1 to two-hit-induced ALI has not been investigated. To examine the participation of HMGB1 in the pathogenesis of ALI caused by the two-hit hypothesis, endotoxin was injected intratracheally in a hemorrhagic shock-primed ALI mouse model. Concentrations of HMGB1 in the lung of the shock group were markedly increased at 16 h (1.63 ± 0.05, compared to the control group: 1.02 ± 0.03; P < 0.05), with the highest concentration being observed at 24 h. In the sham/lipopolysaccharide group, lung HMGB1 concentrations were found to be markedly increased at 24 h (1.98 ± 0.08, compared to the control group: 1.07 ± 0.03; P < 0.05). Administration of lipopolysaccharide to the hemorrhagic shock group resulted in a notable HMGB1 increase by 4 h, with a further increase by 16 h. Intratracheal lipopolysaccharide injection after hemorrhagic shock resulted in the highest lung leak at 16 h (2.68 ± 0.08, compared to the control group: 1.05 ± 0.04; P < 0.05). Compared to the hemorrhagic shock/lipopolysaccharide mice, blockade of HMGB1 at the same time as lipopolysaccharide injection prevented significantly pulmonary tumor necrosis factor-alpha, interleukin-1beta and myeloperoxidase. Lung leak was also markedly reduced at 16 h; blockade of HMGB1 24 h after lipopolysaccharide injection failed to alter lung leak or myeloperoxidase at 48 h. Our observations suggest that HMGB1 plays a key role as a late mediator when lipopolysaccharide is injected after hemorrhagic shock-primed ALI and the kinetics of its release differs from that of one-hit ALI. The therapeutic window to suppress HMGB1 activity should not be delayed to 24 h after the disease onset.
Resumo:
Shock and resuscitation render patients more susceptible to acute lung injury due to an exacerbated immune response to subsequent inflammatory stimuli. To study the role of innate immunity in this situation, we investigated acute lung injury in an experimental model of ischemia-reperfusion (I-R) followed by an early challenge with live bacteria. Conscious rats (N = 8 in each group) were submitted to controlled hemorrhage and resuscitated with isotonic saline (SS, 0.9% NaCl) or hypertonic saline (HS, 7.5% NaCl) solution, followed by intratracheal or intraperitoneal inoculation of Escherichia coli. After infection, toll-like receptor (TLR) 2 and 4 mRNA expression was monitored by RT-PCR in infected tissues. Plasma levels of tumor necrosis factor α and interleukins 6 and 10 were determined by ELISA. All animals showed similar hemodynamic variables, with mean arterial pressure decreasing to nearly 40 mmHg after bleeding. HS or SS used as resuscitation fluid yielded equal hemodynamic results. Intratracheal E. coli inoculation per se induced a marked neutrophil infiltration in septa and inside the alveoli, while intraperitoneal inoculation-associated neutrophils and edema were restricted to the interseptal space. Previous I-R enhanced lung neutrophil infiltration upon bacterial challenge when SS was used as reperfusion fluid, whereas neutrophil influx was unchanged in HS-treated animals. No difference in TLR expression or cytokine secretion was detected between groups receiving HS or SS. We conclude that HS is effective in reducing the early inflammatory response to infection after I-R, and that this phenomenon is achieved by modulation of factors other than expression of innate immunity components.
Resumo:
Zygomycosis is an infection caused by opportunistic fungi of the Zygomycetes class, specifically those from the Mucorales and Entomophthorales orders. It is an uncommon disease, mainly restricted to immunocompromised patients. We report a case of a 73-year-old male patient with a history of fever (39°C) lasting for 1 day, accompanied by shivering, trembling, and intense asthenia. The patient was admitted to the intensive care unit with complex partial seizures, and submitted to orotracheal intubation and mechanical ventilation under sedation with midazolam. The electroencephalogram showed evidence of non-convulsive status epilepticus. There is no fast specific laboratory test that permits confirmation of invasive fungal disease. Unless the physician suspects this condition, the disease may progress rapidly while the patient is treated with broad-spectrum antibiotics. Differential diagnosis between fungal and bacterial infection is often difficult. The clinical presentation is sometimes atypical, and etiological investigation is not always successful. In the present case, the histopathological examination of the biopsy obtained from the right temporal lobe indicated the presence of irregular, round, thick-walled fungi forming papillae and elongated structures of irregular diameter, with no septa, indicative of zygomycete (Basidiobolus). Treatment with liposomal amphotericin B and fluconazole was initiated after diagnosis of meningoencephalitis by zygomycete, with a successful outcome.
Resumo:
Clinically relevant animal models capable of simulating traumatic hemorrhagic shock are needed. We developed a hemorrhagic shock model with male New Zealand rabbits (2200-2800 g, 60-70 days old) that simulates the pre-hospital and acute care of a penetrating trauma victim in an urban scenario using current resuscitation strategies. A laparotomy was performed to reproduce tissue trauma and an aortic injury was created using a standardized single puncture to the left side of the infrarenal aorta to induce hemorrhagic shock similar to a penetrating mechanism. A 15-min interval was used to simulate the arrival of pre-hospital care. Fluid resuscitation was then applied using two regimens: normotensive resuscitation to achieve baseline mean arterial blood pressure (MAP, 10 animals) and hypotensive resuscitation at 60% of baseline MAP (10 animals). Another 10 animals were sham operated. The total time of the experiment was 85 min, reproducing scene, transport and emergency room times. Intra-abdominal blood loss was significantly greater in animals that underwent normotensive resuscitation compared to hypotensive resuscitation (17.1 ± 2.0 vs 8.0 ± 1.5 mL/kg). Antithrombin levels decreased significantly in normotensive resuscitated animals compared to baseline (102 ± 2.0 vs 59 ± 4.1%), sham (95 ± 2.8 vs 59 ± 4.1%), and hypotensive resuscitated animals (98 ± 7.8 vs 59 ± 4.1%). Evidence of re-bleeding was also noted in the normotensive resuscitation group. A hypotensive resuscitation regimen resulted in decreased blood loss in a clinically relevant small animal model capable of reproducing hemorrhagic shock caused by a penetrating mechanism.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.
Resumo:
The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.
Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats
Resumo:
Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.