34 resultados para SILVER BROMIDE CLUSTERS
Resumo:
Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 µl of 0.1% ethidium bromide in 0.9% saline into the central third of the left sciatic nerve 1 (group 1), 2 (group 2), 4 (group 3), 6 (group 4) or 8 (group 5) times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9% saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats) and 15 days (2 rats); for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies.
Resumo:
Schwann cell disturbance followed by segmental demyelination in the peripheral nervous system occurs in diabetic patients. Since Schwann cell and oligodendrocyte remyelination in the central nervous system is a well-known event in the ethidium bromide (EB) demyelinating model, the aim of this investigation was to determine the behavior of both cell types after local EB injection into the brainstem of streptozotocin diabetic rats. Adult male Wistar rats received a single intravenous injection of streptozotocin (50 mg/kg) and were submitted 10 days later to a single injection of 10 µL 0.1% (w/v) EB or 0.9% saline solution into the cisterna pontis. Ten microliters of 0.1% EB was also injected into non-diabetic rats. The animals were anesthetized and perfused through the heart 7 to 31 days after EB or saline injection and brainstem sections were collected and processed for light and transmission electron microscopy. The final balance of myelin repair in diabetic and non-diabetic rats at 31 days was compared using a semi-quantitative method. Diabetic rats presented delayed macrophage activity and lesser remyelination compared to non-diabetic rats. Although oligodendrocytes were the major remyelinating cells in the brainstem, Schwann cells invaded EB-induced lesions, first appearing at 11 days in non-diabetic rats and by 15 days in diabetic rats. Results indicate that short-term streptozotocin-induced diabetes hindered both oligodendrocyte and Schwann cell remyelination (mean remyelination scores of 2.57 ± 0.77 for oligodendrocytes and 0.67 ± 0.5 for Schwann cells) compared to non-diabetic rats (3.27 ± 0.85 and 1.38 ± 0.81, respectively).
Resumo:
This study evaluated the sedative and anesthetic effects of the essential oils (EO) of Hyptis mutabilis (Rich.) Briq. and their isolated components on silver catfish (Rhamdia quelen). Quantitative chemical differences between the EOs obtained from leaves and inflorescences were verified, and a new chemotype rich in globulol was described. Although there were no significant differences in the time of induction for sedation and anesthesia between the EOs, only the leaf EO at 344 mg/L anesthetized all fish without side effects. Fractionation of the leaf EO was carried out by column chromatography. The isolated compounds [(+)-1-terpinen-4-ol and (-)-globulol] showed different activity from that detected for the leaf EO in proportional concentrations and similar sedation to a eugenol control at 10 mg/L. However, fish exposed to 1-terpinen-4-ol (3 and 10 mg/L) did not remain sedated for 30 min. Anesthesia was obtained with 83-190 mg/L globulol, but animals showed loss of mucus during induction and mortality at these concentrations. Synergism of the depressor effects was detected with the association of globulol and benzodiazepine (BDZ), compared with either drug alone. Fish exposed to BDZ or globulol+BDZ association showed faster recovery from anesthesia in water containing flumazenil, but the same did not occur with globulol. In conclusion, the use of globulol in aquaculture procedures should be considered only at sedative concentrations of 10 and 20 mg/L, and its mechanism of action seems not to involve the GABAA-BDZ system.
Resumo:
Fish vaccination has been increasingly exploited as a tool to control pathogen infection. The production of immunoglobulin following vaccination might be affected by several factors such as management procedures, water temperature, and the presence of xenobiotics. In the present study, we aimed to investigate the kinetics of immunoglobulin production in silver catfish (Rhamdia quelen) inoculated with inactivated Aeromonas hydrophila and kept at two different water temperatures (17.4±0.4° or 21.3±0.3°C). The effect of a second antigen inoculation and exposure of fish to sublethal concentrations of the herbicides atrazine and glyphosate at 10% of the lethal concentration (LC50-96h) on specific serum antibodies were also investigated. Antibodies to A. hydrophila were detected as early as 7 days post-inoculation and increased steadily up to 35 days. The kinetics of antibody production were similar in fish kept at 17.4±0.4° and 21.3±0.3°C, and reinoculation of antigen at 21 days after priming failed to increase specific antibody levels. Intriguingly, we found that, in fish exposed to atrazine and glyphosate, the secretion of specific antibodies was higher than in non-exposed inoculated fish. These findings are important for the design of vaccines and vaccination strategies in Neotropical fish species. However, because atrazine and glyphosate are widespread contaminants of soil and water, their immune-stimulating effect could be harmful, in that fish living in herbicide-contaminated water might have increased concentrations of nonspecific antibodies that could mediate tissue injury.