111 resultados para SEMI-VOLATILE ORGANIC COMPOUNDS
Resumo:
The objective of this study was to establish whether there are olfactory interactions in the Lysiphlebus testaceipes Toxoptera citricida and Citrus aurantium tritrophic system. The response of male and female L. testaceipes to different odour sources of the host plant C. aurantium, the aphid host T. citricida and aphid-plant complex were investigated using a Y-tube olfactometer. Laboratory experiments were conducted by exposing individually aged male and female L. testaceipes to eight different odour treatments. Response of the parasitoids was taken after 15 min exposure to the volatiles from the different odour sources and based on their orientation to the particular chamber. Seventy percent of both male and female L. testaceipes showed high attractivity to aphid infested leaves. There was no significant difference based on age and sex of the parasitoid on their choice of odour. The organic compounds released by these combinations acted as semiochemicals in the tritrophic interactions and it is suggested that insect feeding induced attraction of the parasitoid L. testaceipes.
Resumo:
A novel solventless sample preparation, stir-bar sorptive extraction (SBSE), for extraction, and sample enrichment of organic compounds from biological fluids, is described in this manuscript from principle to applications. The SBSE is based on sorptive extraction, whereby the compounds are extracted into a polymer coating, polydimethylsiloxane (PDMS), on a magnetic stirring rod. The extraction is controlled by the partitioning coefficient of drugs between the PDMS and sample matrix, and upon the sample-extraction medium phase ratio. The SBSE technique has been applied successfully, with high sensitivities, to biomedical analysis of volatiles and for semi-volatiles drugs from biological sample, including urine, plasma, and saliva. SBSE combined with in situ derivatization, drugs quite more polar (e.g. metabolites) also can be analyzed.
Resumo:
Using a sampling method of particulate matter (PM) without the use of a dilution tunnel allows for evaluations of the volatile hydrocarbons (HC) in the emissions of diesel cycle engines. The procedure in this work applied a heated filter with temperature controlled. The volatile compounds are condensed at low temperature, allowing for evaluation of the HC by thermal desorption of the PM and for analysis of the condensed compounds of the exhaust gases.
Resumo:
The sustainable development of an emergent country is dependent on a consistent scientific, technologic and innovative policy, on nature and biodiversity, on a rational exploration of natural resources to feeding, social advance and economical aim along with maintenance of health and diseases treatment. Phytochemical investigations may be used to contribute with development throughout undergraduate and graduate career preparing professionals with qualification to these activities, as researcher and professor, including discovering and divulgation of new scientific knowlegments. The role of organic compounds produced by secondary metabolism of plants in the development of new drugs is presented (e. g.) throughout exposition using examples of features involved in this activity, since the recognition of a plant-derived popular medicine, until the laboratory semi-synthesis of its main constituents. Several aspects related to the use of some vegetable species in treatment of many tropical diseases are pointed. Economical and social importance of isolation, structural characterization, pharmacological investigation and chemical transformations of new natural organic substances isolated from the plants are related.
Resumo:
This work is focused on the chemical distribution of volatile and semi-volatile compounds of 18 native populations of Maytenus ilicifolia collected all over Brazil. The extracts of bulk samples (30 plants) of each population were obtained by supercritical CO2 extraction technique, and analyzed by GC/MS. The quantification of compounds (phytol, squalene, vitamin E, limonene, stigmasterol, friedelan-3-ol, friedelin, fridelan-3-one, palmitic acid and geranyl acetate) showed significant variations within the different populations, which could be related tom microclimate characteristics.
Resumo:
This paper discusses the historical and methodological fundaments of the dynamics and quantification of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in aquatic sediments. It also discusses the SEM/AVS relationship, which involves several controversial aspects such as sulfide stability, sulfide-organic matter interaction, and the inability to predict the toxicity of organic compounds in the environment. This relationship is an important tool for the inference of metal bioavailability. The use of ecotoxicological tests with target organisms regulated by international standards is also a relevant aspect.
Resumo:
The purpose of the present study was to validate a method for organic Hg determination in sediment. The procedure for organic Hg was adapted from literature, where the organomercurial compounds were extracted with dichloromethane in acid medium and subsequent destruction of organic compounds by bromine chloride. Total Hg was performed according to 3051A USEPA methodology. Mercury quantification for both methodologies was then performed by CVAAS. Methodology validation was verified by analyzing certified reference materials for total Hg and methylmercury. The uncertainties for both methodologies were calculated. The quantification limit of 3.3 µg kg-1 was found for organic Hg by CVAAS.
Resumo:
A very little known aspect of the scientific career of Regnault is his contribution to the emerging organic chemistry in the first half of the nineteenth century. The purpose of this article is not only to describe two of his most important researches in this field, as were the discovery of two series of halogenated derivates of certain organic compounds and the precise identification of some of the then recently discovered alkaloids, but also the main features that identified his research method. With the involvement in these subjects, Regnault unintentionally positioned himself in the midst of some of the polemics about the classification of organic compounds that characterized this age of science.
Resumo:
Adventitious rooting of ornamental plants can be accelerated by the application of growth regulators, such as auxin. Humic acids, organic matter in soil and organic compounds also have a biostimulant effect. This work evaluated the rooting in cuttings of croton (Codianeum variegatum L. Rumph) and hibiscus (Hibiscus rosa-sinensis L) in response to the application of different concentrations of indolbutyric acid (IBA) and humic acid (HA). The experiment was carried out in a greenhouse. Apical stem cuttings were treated with solutions at concentrations of: 0, 250, 500, 1000, 2000 mg L-1 IBA and 0, 10, 20, 30, 40 mmol L-1 HA carbon isolated from vermicomposting. Forty-five days after the applications, the cuttings were removed from the pots containing carbonized rice hull and the following variables were measured: rooting number, length and width of leaves, fresh and dry matter of root and aerial part and root area. The results were subjected to analysis of variance and the qualitative and quantitative effects of the treatments were compared by contrast and regression, respectively. Regression equations were used to determine the maximum efficiency level of root dry matter according to IBA and HA. Higher accumulation of root dry matter was recorded for the treatments with the doses 579 mg L-1 IBA and 14 mmol L-1 HA and 970 mg L-1 IBA and 50 mmol L-1 HA for root cuttings of croton and hibiscus, respectively. It was found that the application of eiher IBA or HA at the indicated doses accelerates rooting in cuttings of croton and hibiscus and contributes to the formation of vigorous plants.
Resumo:
Several archaeological black earth (ABE) sites occur in the Amazon region. They contain fragments of ceramic artifacts, which are very important for the archaeological purpose. In order to improve the archaeological study in the region we carried out a detailed mineralogical and chemical study of the fragments of ceramic artifacts found in the two ABE sites of Cachoeira-Porteira, in the Lower Amazon Region. Their ceramics comprise the following tempers: cauixi, cariapé, sand, sand +feldspars, crushed ceramic and so on and are composed of quartz, clay equivalent material (mainly burned kaolinite), feldspars, hematite, goethite, maghemite, phosphates, anatase, and minerals of Mn and Ba. Cauixi and cariapé, siliceous organic compounds, were found too. The mineralogical composition and the morphology of their grains indicate a saprolite (clayey material rich on quartz) derived from fine-grained felsic igneous rocks or sedimentary rocks as source material for ceramic artifacts, where silica-rich components such cauixi, cariapé and/or sand (feldspar and rock fragments) were intentionally added to them. The high content of (Al,Fe)-phosphates, amorphous to low crystalline, must be product of the contact between the clayey matrix of pottery wall and the hot aqueous solution formed during the daily cooking of animal foods (main source of phosphor). The phosphate crystallization took place during the discharge of the potteries put together with waste of organic material from animal and vegetal origin, and leaving to the formation of the ABE-soil profile.
Resumo:
Isoprene emission from plants accounts for about one third of annual global volatile organic compound emissions. The largest source of isoprene for the global atmosphere is the Amazon Basin. This study aimed to identify and quantify the isoprene emission and photosynthesis at different levels of light intensity and leaf temperature, in three phenological phases (young mature leaf, old mature leaf and senescent leaf) of Eschweilera coriacea (Matamatá verdadeira), the species with the widest distribution in the central Amazon. In situ photosynthesis and isoprene emission measurements showed that young mature leaf had the highest rates at all light intensities and leaf temperatures. Additionally, it was observed that isoprene emission capacity (Es) changed considerably over different leaf ages. This suggests that aging leads to a reduction of both leaf photosynthetic activity and isoprene production and emission. The algorithm of Guenther et al. (1999) provided good fits to the data when incident light was varied, however differences among E S of all leaf ages influenced on quantic yield predicted by model. When leaf temperature was varied, algorithm prediction was not satisfactory for temperature higher than ~40 °C; this could be because our data did not show isoprene temperature optimum up to 45 °C. Our results are consistent with the hypothesis of the isoprene functional role in protecting plants from high temperatures and highlight the need to include leaf phenology effects in isoprene emission models.
Resumo:
During the oxidation of the substrate, both Nitrosomonas and Nitrobacter have part of the energy made available as high energy phosphate, mamely ADP and ATP. This chemical energy is used to fix CO2. The nature of the reducing power is unknown at present. Active cells of Nitrobacter were shown to fix CO2 along the same pathway as found in higher plant photosynthesis. Sonic extracts of Nitrosomonas and Nitrobacter when incubated with NaH14CO3 and cofactors showed two ports of entry of CO2 into organic compounds one being, as expected, the carboxidismutase reaction. On protein basis an equivalent amount of CO2 was, however, incorporated via the oxaloacetic carboxylase reation. It is clear then that both micoorganisms possess typical autotrophic and heterotrophic mechanisms for the fixation of CO2 which is required for the primary synthesis of cell material.
Resumo:
No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.
Resumo:
Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Liming in Agricultural Production Models with and Without the Adoption of Crop-Livestock Integration
Resumo:
ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.