84 resultados para Reverse Blowing Process
Resumo:
A rapid identification of dengue viruses from clinical samples by using a nested reverse transcriptase-polymerase chain reaction (RT-PCR) procedure was carried out for diagnostic and epidemiological purposes. RT-PCR identified DEN-1 and DEN-2 viruses in 41% (41/100) of previously confirmed cases and provided an accurate confirmation of DHF in four fatal cases. RT-PCR was also useful for detecting and typing dengue viruses in suspected cases, allowing a rapid identification of new serotypes in endemic areas
Resumo:
The presence of Triatoma rubrovaria in Brazil has only been confirmed in the States of Paraná and Rio Grande do Sul (RS), where it is found naturally infected with Trypanosoma cruzi. In the wild environment it occurs in rocky habitats and has an eclectic diet, feeding from cockroaches, reptiles and mammals. Data from the Chagas Disease Control Program obtained by the Fundação Nacional de Saúde, between 1975 and 1997, indicate a growing domiciliary and peridomiciliary invasion of T. rubrovaria in RS, where it has become the most frequently Triatominae species captured in this state since the control of Triatoma infestans. In order to monitor this process, we analyzed collection data derived from 22 years of control campaigns against T. infestans. Collection data for triatomines from domestic habitats show an inverse relationship, with high numbers of T. infestans and low numbers of T. rubrovaria during 1976-1987, compared to the following ten years, 1986-1997, when the number of T. infestans dropped drastically and that of T. rubrovaria increased. There are no consistent indications of intradomiciliary colonization by T. rubrovaria, since only low numbers of nymphs have been captured in the intradomiciliary ecotopes. Nevertheless, this species appears to have preadaptive characteristics for anthropic ecotopes, and should be kept under constant epidemiological surveillance.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR) was applied for the simultaneous detection of hepatitis A virus (HAV), poliovirus (PV) and simian rotavirus (RV-SA11) and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp), PV (394 bp) and RV (278 bp) were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.
Resumo:
We describe a streamlined reverse transcription-polymerase chain reaction methodology for constructing full-length cDNA libraries of trypanosomatids on the basis of conserved sequences located at the 5' and 3'ends of trans-spliced mRNAs. The amplified cDNA corresponded to full-length messengers and was amenable to in vitro expression. Fractionated libraries could be rapidly constructed in a plasmid vector by the TA cloning method (Invitrogen). We believe this is useful when there are concerns over the use of restriction enzymes and phage technology as well as in cases where expression of proteins in their native conformation is desired.
Resumo:
We report a nested reverse transcription-polymerase chain reaction (RT-PCR) assay for hantavirus using primers selected to match high homology regions of hantavirus genomes detected from the whole blood of hantavirus cardiopulmonary syndrome (HCPS) patients from Brazil, also including the N gene nucleotide sequence of Araraquara virus. Hantavirus genomes were detected in eight out of nine blood samples from the HCPS patients by RT-PCR (88.9% positivity) and in all 9 blood samples (100% positivity) by nested-PCR. The eight amplicons obtained by RT-PCR (P1, P3-P9), including one obtained by nested-PCR (P-2) and not obtained by RT-PCR, were sequenced and showed high homology (94.8% to 99.1%) with the N gene of Araraquara hantavirus. Although the serologic method ELISA is the most appropriate test for HCPS diagnosis, the use of nested RT-PCR for hantavirus in Brazil would contribute to the diagnosis of acute hantavirus disease detecting viral genomes in patient specimens as well as initial genomic characterization of circulating hantaviruses.
Resumo:
Oral susceptibility and vertical transmission of dengue virus type 2 (DENV-2) in an Aedes albopictus sample from Rio de Janeiro was estimated. The infection (36.7%) and transmission (83.3%) rates for Ae. albopictus were higher than those of an Ae. aegypti colony used as control, 32.8 and 60%, respectively. Fourth instar larvae and females descendants of 48.5 and 39.1% of experimentally infected Ae. albopictus showed to harbor the virus. The oral susceptibility and the high capacity to assure vertical transmission exhibited by Ae. albopictus from Brazil reinforce that this species may play a role in the maintenance of the virus in nature and be a threat for dengue control in the country.
Resumo:
We describe a reverse transcription-polymerase chain reaction (RT-PCR) and a nested-PCR for diagnosis of Piry, Carajás, Cocal, and Alagoas vesiculoviruses from Brazil. The RNA extracts of viral and clinical samples were submitted to a RT-PCR using Vesiculovirus G primers that amplify part of the glycoprotein gene. The RT-PCR produced amplicons of expected size, 290 base pair, for the four studied viruses. The RT-PCR showed a high sensitivity being 151.3 times (2.18 log) more sensitive for the detection of Piry virus than the classical procedure for virus detection in tissue culture based on the viral cytophatic effect. Amplicons had nucleotides sequenced and were aligned in order to select internal primers for a nested-PCR to confirm the origin of Piry, Carajás, Cocal, and Alagoas Vesiculovirus. Ten blood and tarsal pad epithelial samples of infected Guinea-pigs had Vesiculovirus genome amplified by RT-nested-PCR.
Resumo:
The detection of dengue virus serotypes from Aedes aegypti in Manaus, state of Amazonas was carried out using the reverse transcription-polymerase chain reaction technique. Fourteen pools out 82 (17.1%) were positive for DENV3, providing a minimal infection rate of 2.1% of all analyzed infected female specimens of three different areas of the city.
Resumo:
The concept of anti-inflammation is currently evolving with the definition of several endogenous inhibitory circuits that are important in the control of the host inflammatory response. Here we focus on one of these pathways, the annexin 1 (ANXA1) system. Originally identified as a 37 kDa glucocorticoid-inducible protein, ANXA1 has emerged over the last decade as an important endogenous modulator of inflammation. We review the pharmacological effects of ANXA1 on cell types involved in inflammation, from blood-borne leukocytes to resident cells. This review reveals that there is scope for more research, since most of the studies have so far focused on the effects of the protein and its peptido-mimetics on neutrophil recruitment and activation. However, many other cells central to inflammation, e.g. endothelial cells or mast cells, also express ANXA1: it is foreseen that a better definition of the role(s) of the endogenous protein in these cells will open the way to further pharmacological studies. We propose that a more systematic analysis of ANXA1 physio-pharmacology in cells involved in the host inflammatory reaction could aid in the design of novel anti-inflammatory therapeutics based on this endogenous mediator.
Resumo:
As many metalloproteinases (MMPs), macrophage elastase (MMP-12) is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD), have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12) in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.
Resumo:
In the course of its complex life cycle, the parasite Schistosoma mansoni need to adapt to distinct environments, and consequently is exposed to various DNA damaging agents. The Schistosoma genome sequencing initiative has uncovered sequences from genes and transcripts related to the process of DNA damage tolerance as the enzymes UBC13, MMS2, and RAD6. In the present work, we evaluate the importance of this process in different stages of the life cycle of this parasite. The importance is evidenced by expression and phylogenetic profiles, which show the conservation of this pathway from protozoa to mammalians on evolution.