116 resultados para Residue of kaolin
Resumo:
This experiment was carried out under greenhouse conditions with soil pots during 210 days, to evaluate the effect of calcitic papermill lime-sludge application (at the rates 0, 773, 1.547, and 2.320 mg kg-1 or respective equivalents to control, 2, 4, and 6 t ha-1), on chemical composition of soil leachate and its effects on eucalypt growth and yield. Highest soil leachate pH, SO4, and Na concentrations occurred in the 4 and 6 t ha-1 treatments. Soil leachate nitrate concentrations decreased with increasing lime-sludge rate. Soil leachate phosphate remained low (below the detection limit) in all treatments until 120 days, while the concentration increased in the lime-sludge treatments at 210 days (last sampling) in about 600 mg L-1. Lime-sludge decreased leachate Mg concentration, but had no significant effect among rates. Soil leachate Ca, K, B, Cu, Fe, and Zn did not change significantly for any lime-sludge application rates. The maximum NO3, Ca, Mg, K, and Na concentrations in the soil leachate occurred at 60 days after lime-sludge application (leaching equivalent to 1 pore volume), but for pH and SO4, the maximum occurred at 210 days (leaching equivalent to 4 pore volumes). Lime-sludge application decreased the concentration of exchangeable Al in the soil. Plant diameter growth and dry matter yield were increased with increasing lime-sludge rate. Beneficial effects on mineral nutrition (P, K, Ca, B, and Zn) of eucalypts were also obtained by the application of 4 and 6 t ha-1 of lime-sludge.
Resumo:
Site-specific regression coefficient values are essential for erosion prediction with empirical models. With the objective to investigate the surface-soilconsolidation factor, Cf, linked to the RUSLE's prior-land-use subfactor, PLU, an erosion experiment using simulated rainfall on a 0.075 m m-1 slope, sandy loam Paleudult soil, was conducted at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul (EEA/UFRGS), in Eldorado do Sul, State of Rio Grande do Sul, Brazil. Firstly, a row-cropped area was excluded from cultivation (March 1995), the existing crop residue removed from the field, and the soil kept clean-tilled the rest of the year (to get a degraded soil condition for the intended purpose of this research). The soil was then conventional-tilled for the last time (except for a standard plot which was kept continuously cleantilled for comparison purposes), in January 1996, and the following treatments were established and evaluated for soil reconsolidation and soil erosion until May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) fresh-tilled soil, continuously in clean-tilled fallow (unit plot); (b) reconsolidating soil without cultivation; and (c) reconsolidating soil with cultivation (a crop sequence of three corn- and two black oats cycles, continuously in no-till, removing the crop residues after each harvest for rainfall application and redistributing them on the site after that). Simulated rainfall was applied with a Swanson's type, rotating-boom rainfall simulator, at 63.5 mm h-1 intensity and 90 min duration, six times during the two-and-half years of experimental period (at the beginning of the study and after each crop harvest, with the soil in the unit plot being retilled before each rainfall test). The soil-surface-consolidation factor, Cf, was calculated by dividing soil loss values from the reconsolidating soil treatments by the average value from the fresh-tilled soil treatment (unit plot). Non-linear regression was used to fit the Cf = e b.t model through the calculated Cf-data, where t is time in days since last tillage. Values for b were -0.0020 for the reconsolidating soil without cultivation and -0.0031 for the one with cultivation, yielding Cf-values equal to 0.16 and 0.06, respectively, after two-and-half years of tillage discontinuation, compared to 1.0 for fresh-tilled soil. These estimated Cf-values correspond, respectively, to soil loss reductions of 84 and 94 %, in relation to soil loss from the fresh-tilled soil, showing that the soil surface reconsolidated intenser with cultivation than without it. Two distinct treatmentinherent soil surface conditions probably influenced the rapid decay-rate of Cf values in this study, but, as a matter of a fact, they were part of the real environmental field conditions. Cf-factor curves presented in this paper are therefore useful for predicting erosion with RUSLE, but their application is restricted to situations where both soil type and particular soil surface condition are similar to the ones investigate in this study.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
The ability of a soil to keep its structure under the erosive action of water is usually high in natural conditions and decreases under frequent and intensive cultivation. The effect of five tillage systems (NT = no-till; CP = chisel plowing and one secondary disking; CT = primary and two secondary distings; CTb = CT with crop residue burning; and CTr = CT with removal of crop residues from the field), combined with five nutrient sources (C = control, no nutrient application; MF = mineral fertilizers according to technical recommendations for each crop; PL = 5 Mg ha-1 y-1 fresh matter of poultry litter; CM = 60 m³ ha-1 y-1 slurry cattle manure; and SM = 40 m³ ha-1 y-1 slurry swine manure) on wet-aggregate stability was determined after nine years (four sampled soil layers) and on five sampling dates in the 10th year (two sampled soil layers) of the experiment. The size distribution of the air-dried aggregates was strongly affected by soil bulk density, and greater values of geometric mean diameter (GMD AD) found in some soil tillage or layer may be partly due to the higher compaction degree. After nine years, the GMD AD on the surface was greater in NT and CP compared to conventional tillage systems (CT, CTb and CTr), due to the higher organic matter content, as well as less soil mobilization. Aggregate stability in water, on the other hand, was affected by the low variation in previous gravimetric moisture of aggregates, which contributed to a high coefficient of variation of this attribute. The geometric mean diameter of water-stable aggregates (GMD WS) was highest in the 0.00-0.05 m layer in the NT system, in the layers 0.05-0.10 and 0.12-0.17 m in the CT, and values were intermediate in CP. The stability index (SI) in the surface layers was greater in treatments where crop residues were kept in the field (NT, CP and CT), which is associated with soil organic matter content. No differences were found in the layer 0.27-0.32 m. The effect of nutrient sources on GMD AD and GMD WS was small and did not affect SI.
Resumo:
Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P) increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.
Resumo:
Due to human activity, large amounts of organic residue are generated daily. Therefore, an adequate use in agricultural activities requires the characterization of the main properties. The chemical and physical characterization is important when planning the use and management of organic residue. In this study, chemical and physical properties of charcoal, coffee husk, pine-bark, cattle manure, chicken manure, coconut fiber, sewage sludge, peat, and vermiculite were determined. The following properties were analyzed: N-NH4+, N-N0(3)-, and total concentrations of N, P, S, K, Ca, Mg, Mn, Zn, Cu, and B, as well as pH, Electrical Conductivity (EC) and bulk density. Coffee husk, sewage sludge, chicken manure and cattle manure were generally richer in nutrients. The EC values of these residues were also the highest (0.08 - 40.6 dS m-1). Peat and sewage sludge had the highest bulky density. Sodium contents varied from 0 to 4.75 g kg-1, with the highest levels in chicken manure, cattle manure and sewage sludge. Great care must be taken when establishing proportions of organic residues in the production of substrates with coffee husk, cattle or chicken manure or sewage sludge in the calculation of the applied fertilizer quantity in crop fertilization programs.
Resumo:
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.
Resumo:
Winter cover crops are sources of C and N in flooded rice production systems, but very little is known about the effect of crop residue management and quality on soil methane (CH4) and nitrous oxide (N2O) emissions. This study was conducted in pots in a greenhouse to evaluate the influence of crop residue management (incorporated into the soil or left on the soil surface) and the type of cover-crop residues (ryegrass and serradella) on CH4 and N2O emissions from a flooded Albaqualf soil cultivated with rice (Oryza sativa L.). The closed chamber technique was used for air sampling and the CH4 and N2O concentrations were analyzed by gas chromatography. Soil solution was sampled at two soil depths (2 and 20 cm), simultaneously to air sampling, and the contents of dissolved organic C (DOC), NO3-, NH4+, Mn2+, and Fe2+ were analyzed. Methane and N2O emissions from the soil where crop residues had been left on the surface were lower than from soil with incorporated residues. The type of crop residue had no effect on the CH4 emissions, while higher N2O emissions were observed from serradella (leguminous) than from ryegrass, but only when the residues were left on the soil surface. The more intense soil reduction verified in the deeper soil layer (20 cm), as evidenced by higher contents of reduced metal species (Mn2+ and Fe2+), and the close relationship between CH4 emission and the DOC contents in the deeper layer indicated that the sub-surface layer was the main CH4 source of the flooded soil with incorporated crop residues. The adoption of management strategies in which crop residues are left on the soil surface is crucial to minimize soil CH4 and N2O emissions from irrigated rice fields. In these production systems, CH4 accounts for more than 90 % of the partial global warming potential (CH4+N2O) and, thus, should be the main focus of research.
Resumo:
Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM). The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C) mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification), mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a) conventional tillage (CT) and (b) no tillage (NT) in combination with three cropping systems: (a) R0- monoculture system (soybean/wheat), (b) R1- winter crop rotation (soybean/wheat/soybean/black oat), and (c) R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat). The soil C-CO2 efflux was measured every 14 days for two years (48 measurements), by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between tillage systems were noticed for C-CO2 evolution. Soil C-CO2 effluxes followed a bi-modal pattern, with peaks in October/November and February/March. The highest emission was recorded in the summer and the lowest in the winter. The C-CO2 effluxes were weakly correlated to air temperature and not correlated to soil moisture. Based on the soil C conservation indexes investigated, NT associated to intensive crop rotation was more C conserving than CT with monoculture.
Resumo:
The aim of this study was to calibrate the CENTURY, APSIM and NDICEA simulation models for estimating decomposition and N mineralization rates of plant organic materials (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum, Stylosanthes guyanensis) for 360 days in the Atlantic rainforest bioma of Brazil. The models´ default settings overestimated the decomposition and N-mineralization of plant residues, underlining the fact that the models must be calibrated for use under tropical conditions. For example, the APSIM model simulated the decomposition of the Stizolobium aterrimum and Calopogonium mucunoides residues with an error rate of 37.62 and 48.23 %, respectively, by comparison with the observed data, and was the least accurate model in the absence of calibration. At the default settings, the NDICEA model produced an error rate of 10.46 and 14.46 % and the CENTURY model, 21.42 and 31.84 %, respectively, for Stizolobium aterrimum and Calopogonium mucunoides residue decomposition. After calibration, the models showed a high level of accuracy in estimating decomposition and N- mineralization, with an error rate of less than 20 %. The calibrated NDICEA model showed the highest level of accuracy, followed by the APSIM and CENTURY. All models performed poorly in the first few months of decomposition and N-mineralization, indicating the need of an additional parameter for initial microorganism growth on the residues that would take the effect of leaching due to rainfall into account.
Resumo:
The decomposition of plant residues is a biological process mediated by soil fauna, but few studies have been done evaluating its dynamics in time during the process of disappearance of straw. This study was carried out in Chapecó, in southern Brazil, with the objective of monitoring modifications in soil fauna populations and the C content in the soil microbial biomass (C SMB) during the decomposition of winter cover crop residues in a no-till system. The following treatments were tested: 1) Black oat straw (Avena strigosa Schreb.); 2) Rye straw (Secale cereale L.); 3) Common vetch straw (Vicia sativa L.). The cover crops were grown until full flowering and then cut mechanically with a rolling stalk chopper. The soil fauna and C content in soil microbial biomass (C SMB) were assessed during the period of straw decomposition, from October 2006 to February 2007. To evaluate C SMB by the irradiation-extraction method, soil samples from the 0-10 cm layer were used, collected on eight dates, from before until 100 days after residue chopping. The soil fauna was collected with pitfall traps on seven dates up to 85 days after residue chopping. The phytomass decomposition of common vetch was faster than of black oat and rye residues. The C SMB decreased during the process of straw decomposition, fastest in the treatment with common vetch. In the common vetch treatment, the diversity of the soil fauna was reduced at the end of the decomposition process.
Resumo:
This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.
Resumo:
The impact of agro-industrial organic wastes in the environment can be reduced when used in agriculture. From the standpoint of soil fertility, residue applications can increase the organic matter content and provide nutrients for plants. This study evaluated the effect of biological sludge from gelatin industry on the chemical properties of two Ultisols (loamy sand and sandy clay) and an Oxisol (clay). The experiment lasted 120 days and was carried out in laboratory in a completely randomized design with factorial arrangement, combining the three soils and six biological sludge rates (0, 100, 200, 300, 400, and 500 m³ ha-1), with three replications. Biological sludge rates of up to 500 m³ ha-1 decreased soil acidity and increased the effective cation exchange capacity (CEC) and N, Ca, Mg, and P availability, without exceeding the tolerance limit for Na. The increase in exchangeable base content, greater than the effective CEC, indicates that the major part of cations added by the sludge remains in solution and can be lost by leaching.