48 resultados para Recycled Aggregates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass) at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing), followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007), during animal grazing (September/2007) and at the end of the grazing cycle (November/2007). The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer), there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soil structure transformation from ferralic to nitic horizons was studied in a toposequence on quaternary red clayey sediments and diabase in Piracicaba (SP), Brazil. Morphological and micromorphological studies, image analysis, soil water characteristic curves and monitoring of (total) soil water potential head were used. The presence of polyconcave vughs, clayskins and planar voids shows that the vertical and lateral transition and structural transformation from ferralic to nitic horizons is given by the coalescence of the microaggregates, probably due to tensions created in a drier period in the past. Changes to a more humid climate with a defined dry season and alternate drying and wetting cycles resulted in the fissuration of the previously coalesced material, forming polyhedral aggregates and microaggregates. Simultaneously, clay illuviation filled the voids and together with the compacting action of the biological activity of these soils contributed to the coalescence of microaggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane production should be integrated with crop diversification with a view to competitive and sustainable results in economic, social and environmental aspects. The purpose of this study was to assess the influence of different soil uses during the sugarcane fallow period on the chemical and physical properties of eutroferric Red Latosol - LVef (Oxisol) and Acric Latosol - LVw (Acric Oxisol), in Jaboticabal, São Paulo State, Brazil (21º14'05'' S, 48º17'09'' W, 600 m asl). A randomized block design was used with five replications and four treatments, consisting of different soil uses (crops) in the sugarcane fallow period: soybean only, soybean/fallow/soybean, soybean/millet/soybean, and soybean/sunn hemp/soybean. After two soybean crops, the LVef chemical properties remained at intermediate to high levels; while those of the LVw, classified as intermediate to high in the beginning, increased to high levels. Thus, the different soil uses during the sugarcane fallow period allowed the maintenance of LVef fertility levels and the improvement of those of the LVw. Two soybean crops increased macroporosity in the 0.0-0.1 m layer of the LVef; reduced soil aggregates in the 0.0-0.1 and 0.1-0.2 m layers of both soils, and reduced aggregate stability in these two layers of the LVw. Planting pearl millet or sunn hemp between the two soybean growing seasons promoted the formation of larger soil aggregates in the surface layer (0.0-0.1 m) of the LVw.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gypsum application may enhance the soil quality for plants in terms of soil chemical and physical properties. The objective of this study was to evaluate the effects of gypsum application on the structural quality of a no-tillage Red Latosol. The experiment was initiated in September 2005 in Guarapuava-PR, with gypsum applications of 0; 4; 8; and 12 Mg ha-1 on the soil surface. In November 2009, two soil blocks were sampled from the 0-0.3 m layer for visual evaluation of the soil structure quality (Sq) and to determine the aggregate-tensile strength (ATS). Soil penetration resistance (PR) and gravimetric moisture (H%) of the 0-0.300 m layer were evaluated, and soil cores were collected (layers 0.000-0.075 and 0.075-0.150 m), to determine soil bulk density (BD), total soil porosity (TP), microporosity (Mi), and macroporosity (Ma). Data were subjected to analysis of regression at 5 %. No significant effects of gypsum application on ATS and H % of aggregates were observed, but for Sq, a quadratic effect (0.000-0.075 m) and linear increase (0.075-0.150 and 0.150-0.300 m) were stated, indicating soil quality decrease, although Sq remained mostly below 3.0, with good to intermediate soil quality. Soil PR increased with gypsum, but also remained below critical levels. No effect was observed for soil H % at the moment of PR determination on the field. The gypsum applications decreased BD in the 0.075-0.150 m layer, and increased PT and Ma, while in 0.000-0.075 m some Ma was converted to Mi, without affecting PT and BD. These last results indicate a gain in soil structural quality by gypsum applications, but the higher scores of soil structure and values of soil penetration resistance, though still below thresholds, should be monitored to prevent limitations to soil use in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practice of land leveling alters the soil surface to create a uniform slope to improve land conditions for the application of all agricultural practices. The aims of this study were to evaluate the impacts of land leveling through the magnitudes, variances and spatial distributions of selected soil physical properties of a lowland area in the State of Rio Grande do Sul, Brazil; the relationships between the magnitude of cuts and/or fills and soil physical properties after the leveling process; and evaluation of the effect of leveling on the spatial distribution of the top of the B horizon in relation to the soil surface. In the 0-0.20 m layer, a 100-point geo-referenced grid covering two taxonomic soil classes was used in assessment of the following soil properties: soil particle density (Pd) and bulk density (Bd); total porosity (Tp), macroporosity (Macro) and microporosity (Micro); available water capacity (AWC); sand, silt, clay, and dispersed clay in water (Disp clay) contents; electrical conductivity (EC); and weighted average diameter of aggregates (WAD). Soil depth to the top of the B horizon was also measured before leveling. The overall effect of leveling on selected soil physical properties was evaluated by paired "t" tests. The effect on the variability of each property was evaluated through the homogeneity of variance test. The thematic maps constructed by kriging or by the inverse of the square of the distances were visually analyzed to evaluate the effect of leveling on the spatial distribution of the properties and of the top of the B horizon in relation to the soil surface. Linear regression models were fitted with the aim of evaluating the relationship between soil properties and the magnitude of cuts and fills. Leveling altered the mean value of several soil properties and the agronomic effect was negative. The mean values of Bd and Disp clay increased and Tp, Macro and Micro, WAD, AWC and EC decreased. Spatial distributions of all soil physical properties changed as a result of leveling and its effect on all soil physical properties occurred in the whole area and not specifically in the cutting or filling areas. In future designs of leveling, we recommend overlaying a cut/fill map on the map of soil depth to the top of the B horizon in order to minimize areas with shallow surface soil after leveling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction of a soil after surface coal mining involves heavy machinery traffic during the topographic regeneration of the area, resulting in compaction of the relocated soil layers. This leads to problems with water infiltration and redistribution along the new profile, causing water erosion and consequently hampering the revegetation of the reconstructed soil. The planting of species useful in the process of soil decompaction is a promising strategy for the recovery of the soil structural quality. This study investigated the influence of different perennial grasses on the recovery of reconstructed soil aggregation in a coal mining area of the Companhia Riograndense de Mineração, located in Candiota-RS, which were planted in September/October 2007. The treatments consisted of planting: T1- Cynodon dactylon cv vaquero; T2 - Urochloa brizantha; T3 - Panicum maximun; T4 - Urochloa humidicola; T5 - Hemarthria altissima; T6 - Cynodon dactylon cv tifton 85. Bare reconstructed soil, adjacent to the experimental area, was used as control treatment (T7) and natural soil adjacent to the mining area covered with native vegetation was used as reference area (T8). Disturbed and undisturbed soil samples were collected in October/2009 (layers 0.00-0.05 and 0.10-0.15 m) to determine the percentage of macro- and microaggregates, mean weight diameter (MWD) of aggregates, organic matter content, bulk density, and macro- and microporosity. The lower values of macroaggregates and MWD in the surface than in the subsurface layer of the reconstructed soil resulted from the high degree of compaction caused by the traffic of heavy machinery on the clay material. After 24 months, all experimental grass treatments showed improvements in soil aggregation compared to the bare reconstructed soil (control), mainly in the 0.00-0.05 m layer, particularly in the two Urochloa treatments (T2 and T4) and Hemarthria altissima (T5). However, the great differences between the treatments with grasses and natural soil (reference) indicate that the recovery of the pre-mining soil structure could take decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The no-till system with complex cropping sequences may improve the structural quality and carbon (C) sequestration in soils of the tropics. Thus, the objective of this study was to evaluate the effects of cropping sequences after eight years under the no-till system on the physical properties and C sequestration in an Oxisol in the municipality of Jaboticabal, Sao Paulo, Brazil. A randomized split-block design with three replications was used. The treatments were combinations of three summer cropping sequences - corn/corn (Zea mays L.) (CC), soybean/soybean (Glycine max L. Merryll) (SS), and soybean-corn (SC); and seven winter crops - corn, sunflower (Helianthus annuus L.), oilseed radish (Raphanus sativus L.), pearl millet (Pennisetum americanum (L.) Leeke), pigeon pea (Cajanus cajan (L.) Millsp), grain sorghum (Sorghum bicolor (L.) Moench), and sunn hemp (Crotalaria juncea L.). Soil samples were taken at the 0-10 cm depth after eight years of experimentation. Soil under SC and CC had higher mean weight diameter (3.63 and 3.55 mm, respectively) and geometric mean diameter (3.55 and 2.92 mm) of the aggregates compared to soil under SS (3.18 and 2.46 mm). The CC resulted in the highest soil organic C content (17.07 g kg-1), soil C stock (15.70 Mg ha-1), and rate of C sequestration (0.70 Mg ha-1 yr-1) among the summer crops. Among the winter crops, soil under pigeon pea had the highest total porosity (0.50 m³ m-3), and that under sunn hemp had the highest water stable aggregates (93.74 %). In addition, sunn hemp did not differ from grain sorghum and contained the highest soil organic C content (16.82 g kg-1) and also had the highest rate of C sequestration (0.67 Mg ha-1 yr-1). The soil resistance to penetration was the lower limit of the least limiting water range, while the upper limit was air-filled porosity for soil bulk densities higher than 1.39 kg dm-3 for all cropping sequences. Within the SC sequence, soil under corn and pigeon pea increased least limiting water range by formation of biopores because soil resistance to penetration decreased with the increase in soil bulk density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Garanhuns Plateau in the Agreste region of the State of Pernambuco, Brazil is characterized by humid climatic conditions due to orographic rains, unlike the surrounding semiarid region. These soils are subjected to intense agricultural use and are extremely important for the regional economy. This study was carried out in the municipality of Brejão in the Agreste region with the aim of assessing changes in humic Haplustox soils subjected to different land uses. Four plots with different vegetation covers (native forest, secondary shrubby vegetation (capoeira), traditional cropping system, and planted pasture) were selected, and samples were taken from a soil profile and four small pits surrounding it at each site. Physical and chemical properties were assessed, including aggregate stability, humic organic fractions, and a microbiological evaluation through determination of basal respiration, microbial biomass carbon, and metabolic quotient. The soils under study showed physical and chemical properties typical of a Haplustox, such as low nutrient content, low cation exchange capacity, and high levels of acidity and Al saturation. The total organic carbon (TOC) contents were high regardless of the type of land use. Aggregates < 2 mm were dominant in all the conditions under study. The TOC content was higher in the soil under capoeira, 43.91 g kg-1 on the surface, while 34.36 and 33.43 g kg-1 of TOC were observed in the first layer of forest and pasture soils, respectively. While the microbial biomass C (MBC) was greater than 700 mg kg-1 in the forest and pasture areas (in the 0-5 cm layer), and 588 mg kg-1 in the soil under capoeira, these numbers were not statistically different. In the cultivated soil area, there was a reduction of around 28 % in TOC and MBC contents. Agricultural activity contributed to degradation of the humic horizon, as can be seen from a significant decrease in the TOC and changes in the relative distribution of the humic fractions. In contrast, aggregate stability was not altered as a function of the different land uses; the soil under planted pasture and capoeira were similar to the soil under native forest. Humin was the most important humified fraction for C reserves, contributing over 40 % of the TOC in these soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.