35 resultados para Recording and registration
Resumo:
The present study was carried out to assess the possibility of measuring fecal steroid hormone metabolites as a noninvasive technique for monitoring reproductive function in the three-toed sloth, Bradypus variegatus. Levels of the estradiol (E2) and progesterone (P4) metabolites were measured by radioimmunoassay in fecal samples collected over 12 weeks from 4 captive female B. variegatus sloths. The validation of the radioimmunoassay for evaluation of fecal steroid metabolites was carried out by collecting 10 blood samples on the same day as defecation. There was a significant direct correlation between the plasma and fecal E2 and P4 levels (P < 0.05, Pearson's test), thereby validating this noninvasive technique for the study of the estrous cycle in these animals. Ovulation was detected in two sloths (SL03 and SL04) whose E2 levels reached 2237.43 and 6713.26 pg/g wet feces weight, respectively, for over four weeks, followed by an increase in P4 metabolites reaching 33.54 and 3242.68 ng/g wet feces weight, respectively. Interestingly, SL04, which presented higher levels of E2 and P4 metabolites, later gave birth to a healthy baby sloth. The results obtained indicate that this is a reliable technique for recording gonadal steroid secretion and thereby reproduction in sloths.
Resumo:
Our objective was to examine the effet of gender on the sleep pattern of patients referred to a sleep laboratory. The data (questionnaires and polysomnographic recordings) were collected from a total of 2365 patients (1550 men and 815 women). The polysomnography permits an objective assessment of the sleep pattern. We included only polysomnography exams obtained with no more than one recording system in order to permit normalization of the data. Men had a significantly higher body mass index than women (28.5 ± 4.8 vs 27.7 ± 6.35 kg/m²) and had a significantly higher score on the Epworth Sleepiness Scale (10.8 ± 5.3 vs 9.5 ± 6.0), suggesting daytime sleepiness. Women had a significantly higher sleep latency than men, as well as a higher rapid eye movement (REM) latency. Men spent more time in stages 1 (4.6 ± 4.1 vs 3.9 ± 3.8) and 2 (57.0 ± 10.5 vs 55.2 ± 10.1) of non-REM sleep than women, whereas women spent significantly more time in deep sleep stages (3 and 4) than men (22.6 ± 9.0 vs 19.9 ± 9.0). The apnea/hypopnea and arousal indexes were significantly higher and more frequent in men than in women (31.0 ± 31.5 vs 17.3 ± 19.7). Also, periodic leg movement index did not differ significantly between genders, but rather differed among age groups. We did not find significant differences between genders in the percentage of REM sleep and sleep efficiency. The results of the current study suggest that there are specific gender differences in sleep pattern.
Resumo:
The effects of exercise training on cardiovascular and autonomic functions were investigated in female rats. After an aerobic exercise training period (treadmill: 5 days/week for 8 weeks), conscious female Wistar (2 to 3 months) sedentary (S, N = 7) or trained rats (T, N = 7) were cannulated for direct arterial pressure (AP) recording in the non-ovulatory phases. Vagal (VT) and sympathetic tonus (ST) were evaluated by vagal (atropine) and sympathetic (propranolol) blockade. Baroreflex sensitivity was evaluated by the heart rate responses induced by AP changes. Cardiopulmonary reflex was measured by the bradycardic and hypotensive responses to serotonin. Resting bradycardia was observed in T (332 ± 7 bpm) compared with S animals (357 ± 10 bpm), whereas AP did not differ between groups. T animals exhibited depressed VT and ST (32 ± 7 and 15 ± 4 bpm) compared to S animals (55 ± 5 and 39 ± 10 bpm). The baroreflex and cardiopulmonary bradycardic responses were lower in T (-1.01 ± 0.27 bpm/mmHg and -17 ± 6 bpm) than in the S group (-1.47 ± 0.3 bpm/mmHg and -41 ± 9 bpm). Significant correlations were observed between VT and baroreflex (r = -0.72) and cardiopulmonary (r = -0.76) bradycardic responses. These data show that exercise training in healthy female rats induced resting bradycardia that was probably due to a reduced cardiac ST. Additionally, trained female rats presented attenuated bradycardic responses to baro- and cardiopulmonary receptor stimulation that were associated, at least in part, with exercise training-induced cardiac vagal reduction.
Resumo:
Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.
Resumo:
The autonomic nervous system maintains homeostasis, which is the state of balance in the body. That balance can be determined simply and noninvasively by evaluating heart rate variability (HRV). However, independently of autonomic control of the heart, HRV can be influenced by other factors, such as respiratory parameters. Little is known about the relationship between HRV and spirometric indices. In this study, our objective was to determine whether HRV correlates with spirometric indices in adults without cardiopulmonary disease, considering the main confounders (e.g., smoking and physical inactivity). In a sample of 119 asymptomatic adults (age 20-80 years), we evaluated forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). We evaluated resting HRV indices within a 5-min window in the middle of a 10-min recording period, thereafter analyzing time and frequency domains. To evaluate daily physical activity, we instructed participants to use a triaxial accelerometer for 7 days. Physical inactivity was defined as <150 min/week of moderate to intense physical activity. We found that FVC and FEV1, respectively, correlated significantly with the following aspects of the RR interval: standard deviation of the RR intervals (r =0.31 and 0.35), low-frequency component (r =0.38 and 0.40), and Poincaré plot SD2 (r =0.34 and 0.36). Multivariate regression analysis, adjusted for age, sex, smoking, physical inactivity, and cardiovascular risk, identified the SD2 and dyslipidemia as independent predictors of FVC and FEV1 (R2=0.125 and 0.180, respectively, for both). We conclude that pulmonary function is influenced by autonomic control of cardiovascular function, independently of the main confounders.