49 resultados para Receptor, Adenosine A1
Resumo:
In rats pre-but not post-training ip administration of either flumazenil, a central benzodiazepine (BSD) receptor antagonist, or of n-butyl-B-carboline-carboxylate (BCCB), an inverse agonist, enhanced retention of inhibitory avoidance learning. Flumazenil vlocked the enhancing effect of BCCB, and the inhibitory effect of the BZD agonists clonazepam and diazepam also given pre-training. Post-training administration of these drugs had no effects. The peripheral BZD receptor agonist/chloride channel blocker Ro5-4864 had no effect on the inhibitory avoidance task when given ip prior to training, buth it caused enhancement when given immediately post-training either ip or icv. This effect was blocked by PK11195, a competitive antagonist of Ro5-4864. These results suggest that ther is an endogenous mechanism mediated by BZD agonists, which is sensitive to inverse agonists and that normally down-regulates the formation of memories through a mechanism involving GABA-A receptors and the corresponding chloride channels. The most likely agonists for the endogenous mechanism suggested are the diazepam-like BZDs found in brain whose origin is possibly alimentary. Levels of these BZDs in the cortex were found to sharply decrease after inhibitory acoidance training or mere exposure to the training apparatus.
Resumo:
Six clinical isolates of influenza A viruses were examined for hemagglutinin receptor specificity and neuraminidase substrate specificity. All of the viral isolates minimally passaged in mammalian cells demonstrated preferential agglutination of human erythrocytes enzymatically modified to contain NeuAc alpha 2,6Gal sequences, with no agglutination of cells bearing NeuAc alpha 2,3Gal sequences. This finding is consistent with the hemagglutination receptor specificity previously demonstrated for laboratory strains of influenza A viruses. The neuraminidase substrate specificities of the clinical isolates examined were also identical to that described for the N2 neuraminidase of recent laboratory strains of human influenza viruses. The H3N2 viruses all displayed the ability to release sialic acid from both alpha 2, 3 and alpha 2, 6 linkages. In addition, two clinical isolates of H1N1 viruses also demonstrated this dual neuraminidase substrate specificity, a characteristic which has not been previously described for the N1 neuraminidase. These results demonstrate that complementary hemagglutinin and neuraminidase specificities are found in recent isolates of both H1N1 and H3N2 influenza viruses.
Resumo:
Wild type and mutant toxins of Bacillus thuringiensis delta-endotoxins were examined for their binding to midgut brush border membrane vesicles (BBMV). CryIAa, CryIAb, and CryIAc were examined for their binding to Gypsy moth (Lymantria dispar) BBMV. The binding of CryIAa and CryIAc was directly correlated with their toxicity, while CryIAb was observed to have lower binding than expected from its toxicity. The latter observation confirms the observation of Wolfersberger (1990). The "rule" of reciprocity of binding and toxicity is apparently obeyed by CryIAa and CryIAc, but broken by CryIAb on L. dispar. Alanine substitutions were made in several positions of the putative loops of CryIAa to test the hypothesis that the loops are intimately involved in binding to the receptor. The mutant toxins showed minor shifts in heterologous binding to Bombyx mori BBMV, but not enough to conclude that the residues chosen play critical roles in receptor binding.
Resumo:
Vaccinal and wild strains of Newcastle Disease virus (NDV) were analyzed for cell receptor binding and fusogenic biological properties associated with their HN (hemagglutinin-neuraminidase) and F (fusion protein) surface structures respectively. The evaluation of the biological activities of HN and F was carried out respectively by determination of hemagglutinating titers and hemolysis percentages, using erythrocytes from various animal origins at different pH values. Significant differences in hemagglutination titers for some strains of NDV were detected, when interacting with goose, sheep, guinea-pip and human "O" group erythrocytes at neutral pH. Diversity of hemolysis percentagens was observed between different NDV strains at acid pH. These analysis were developed to evaluate particular aspects of the actual influence of the receptor specifity and pH on the receptor binding and fusogenic processes of Newcastle Disease viruses.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Adenosine deaminase (ADA) activities in sera, lymphocytes and granulocytes in patients with cutaneous leishmaniasis were investigated and compared with control groups. Fifty patients and 50 healthy individuals were studied. The clinical diagnosis was parasitologically confirmed by culture and Giemsa stain. ADA activities were measured by colorimetric method. Serum ADA activities 37.80 ± 11.90, 18.28 ± 6.08 IU/L (p<0.0001), lymphocyte specific ADA activities 14.90 ± 7.42, 8.38 ± 7.42 U/mg protein (p = 0.04), granulocyte specific ADA activities 1.15 ± 0.73 , 1.09 ± 0.67 U/mg protein ( p>0.05) were found in patients and control groups, respectively. ADA activity increases in some infectious diseases were cell mediated immune mechanisms are dominant. In cutaneous leishmaniasis, lymphokine-mediated macrophage activity is the main effector mechanism. Increase in serum and lymphocyte ADA activities in patients with cutaneous leishmaniasis may be dependent on and reflects the increase in phagocytic activity of macrophages and maturation of T-lymphocytes.
Resumo:
Prostaglandins (Pgs) have been shown to inhibit the replication of several DNA and RNA viruses. Here we report the effect of prostaglandin (PgA1) on the multiplication of a positive strand RNA virus, Classical Swine Fever Virus (CSFV) in PK15 cells. PgA1 was found to inhibit the multiplication of CSFV. At a concentration of 5 µg/ml, which was nontoxic to the cells, PgA1 inhibitis virus production in 99%. In PgA1 treated cells the size and number of characteristic Classical Swine Fever focus decreased in amount.
Resumo:
In order to investigate purin and primidin metabolism pathways in hepatitis, adenosine deaminase (ADA) and guanosine deaminase (GDA) activities in sera of patients with different types and manifestations of viral hepatitis disease (A, B, C, D, E, chronic, acute) were investigated and compared with the control group of healthy individuals. Hepatitis cases were classified with respect to their serological findings and clinics. When compared all the hepatitis cases with the controls, levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase enzymes, as well as ADA and GDA, were significantly higher than the control group (p<0.01). Levels of ADA and GDA in hepatitis cases were determined as 26.07±11.98 IU/l and 2.37±1.91 IU/l, respectively. When compared their ADA and GDA levels amongst the classified hepatitis groups, there was no difference in ADA levels amongst cases (p>0.05). However, GDA levels in hepatitis A group were closed to the controls. Increase in serum ADA activities in hepatitis forms may be dependent on and reflect the increase in phagocytic activity of macrophages and maturation of T-lymphocytes, and may be valuable in monitoring in viral hepatitis cases.
Resumo:
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.
Resumo:
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.
Resumo:
Determination of seric levels of adenosine deaminase (ADA), an enzyme produced by monocytes/macrophages and lymphocytes, has been used in the diagnosis of human tuberculosis (TB). In the present study, ADA seric activity was evaluated comparatively to the comparative tuberculin test in the diagnosis of bovine tuberculosis. Two hundred fifty-six cattle were classified by origin and by the comparative tuberculin test as TB-positive animals (n = 52, from herds where the Mycobacterium bovis had previously been isolated), and TB-negative animals (n = 204, TB-free herds). The mean ADA seric value from the TB-positive group (4.45 ± 2.33 U/L) was significantly lower (p = 0.008) than that observed in sera from the TB-negative group (6.12 ± 4.47 U/L). When animals from a herd with clinical cases of enzootic bovine leukosis of TB-negative group were withdrawn from analysis, the mean ADA seric values of TB-negative group (5.12 ± 3.75 U/L) was not significantly different anymore from that of the TB-positive group (p = 0.28). There was no agreement in the diagnosis of bovine TB between comparative tuberculin test and determination of ADA seric values, using two different cutoff points, being 6.12 U/L and 15.0 U/L, (kappa = -0.086 and kappa = -0.082, respectively). In conclusion, the determination of ADA seric activity was not a good auxiliary test for bovine TB, because it was not able to distinguish between TB-positive and TB-negative animals.
Resumo:
The aim of this study was to test the possible implication of toll-like receptor 2 (TLR2) and TLR4 gene polymorphisms in determining the susceptibility to Chagas' disease. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism in 475 individuals from Colombia, 143 seropositive with chagasic cardiomyopathy, 132 seropositive asymptomatic and 200 seronegative. The TLR2 arginine to glutamine substitution at residue 753(Arg753Gln) polymorphism was absent in the groups analyzed. The TLR4 Asp299Gly and Thr399Ile polymorphisms are in linkage disequilibrium and we observed a very low frequency of these polymorphisms in our study population (2.6% and 1.8% respectively). The overall TLR2 and TLR4 alleles and genotype distribution in seronegative and seropositive were not significantly different. We compared the frequencies between asymptomatic patients and those with chagasic cardiomyopathy and we did not observe any significant differences in the distribution of alleles or genotypes. In summary, this study corroborates the low frequency of TLR2 and TLR4 polymorphisms observed in other populations and suggest that these do not play an important role in Chagas' disease. The validation of these findings in independent cohorts is needed to firmly establish a role for TLR2 and TLR4 variants in Chagas' disease.
Resumo:
Toxoplasma gondii infection is an important mediator of ocular disease in Brazil more frequently than reported from elsewhere. Infection and pathology are characterized by a strong proinflammatory response which in mice is triggered by interaction of the parasite with the toll-like receptor (TLR)/MyD88 pathway. A powerful way to identify the role of TLRs in humans is to determine whether polymorphisms at these loci influence susceptibility to T. gondii-mediated pathologies. Here we report on a small family-based study (60 families; 68 affected offspring) undertaken in Brazil which was powered for large effect sizes using single nucleotide polymorphisms with minor alleles frequencies > 0.3. Of markers in TLR2, TLR5 and TLR9 that met these criteria, we found an association Family Based Association Tests [(FBAT) Z score = 4.232; p = 1.5 x 10-5; p corrected = 1.2 x 10-4] between the C allele (frequency = 0.424; odds ratio = 7; 95% confidence interval 1.6-30.8) of rs352140 at TLR9 and toxoplasmic retinochoroiditis in Brazil. This supports the hypothesis that direct interaction between T. gondii and TLR9 may trigger proinflammatory responses that lead to severe pathologies such as the ocular disease that is associated with this infection in Brazil.
Resumo:
Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT) and endothelin-1 (ET-1), two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling.
Resumo:
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.