53 resultados para Reactor water clean-up
Resumo:
Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries) and the other with soil data from an irrigation scheduling and management system (239 entries). From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.
Resumo:
Soil water availability to plants is affected by soil compaction and other variables. The Least Limiting Water Range (LLWR) comprises soil physical variables affecting root growth and soil water availability, and can be managed by either mechanical or biological methods. There is evidence that effects of crop rotations could last longer than chiseling, so the objective of this study was to assess the effect of soil chiseling or growing cover crops under no-till (NT) on the LLWR. Crop rotations involving triticale (X Triticosecale) and sunflower (Helianthus annuus) in the fall-winter associated with millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and sunn hemp (Crotalaria juncea) as cover crops preceding soybean (Glycine max) were repeated for three consecutive years. In the treatment with chiseling (performed only in the first year), the area was left fallow between the fall-winter and summer crops. The experiment was carried out in Botucatu, São Paulo State, Brazil, from 2003 to 2006 on a Typic Rhodudalf. The LLWR was determined in soil samples taken from the layers 0-20 cm and 20- 40 cm, after chemical desiccation of the cover crops in December of the first and third year of the experiment. Chiseling decreases soil bulk density in the 0-20 cm soil layer, increasing the LLWR magnitude by lowering the soil water content at which penetration resistance reaches 2.0 MPa; this effect is present up to the third year after chiseling and can reach to a depth of 0.40 m. Crop rotations involving sunflower + sunn hemp, triticale + millet and triticale + sunn hemp for three years prevented soil bulk density from exceeding the critical soil bulk density in the 0- 0.20 m layer. This effect was observed to a depth of 0.40 m after three years of chiseling under crop rotations involving forage sorghum. Hence, chiseling and some crop rotations under no tillage are effective in increasing soil quality assessed by the LLWR.
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.
Resumo:
ABSTRACT Knowledge of the terms (or processes) of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids) growing muskmelon (Cucumis melo L.) under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W). Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m). The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other) were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row), between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp.) along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing), growing (22-40 DAS), fruiting (40-58 DAS) and maturation (58-70 DAS). Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by the instantaneous profile method. Crop actual evapotranspiration was calculated as the unknown of the soil water balance equation. The soil water balance method is effective in estimating the actual evapotranspiration of irrigated muskmelon; there was no significant effect of soil coverage on capillary rise, internal drainage, crop actual evapotranspiration, and muskmelon yield compared with the uncovered soil; the transport of water caused by evaporation in the uncovered soil was controlled by the break in capillarity at the soil-atmosphere interface, which caused similar water dynamics for both management practices applied.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS) and no-water stress (NWS), and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand). Total transpirable soil water (TTSW), the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR) were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor) of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.
Resumo:
Pyrohydrolysis is proposed for fossil fuels sample preparation for further fluorine and chlorine determination. Samples were heated during 10 min at temperatures up to 1000 °C. Water vapor was passed through the reactor and the volatile products were condensed and collected in NH4OH solution. Fluoride was determined by potentiometry using an ion selective electrode (ISE) and Cl by ICP OES and DRC-ICP-MS. The results are in good agreement with certified values and the precision is better than 10% (n = 4). Sample preparation by means of pyrohydrolysis is relatively simple, whereas chlorine and fluorine can be determined at low concentrations.
Resumo:
A reliable method using LC-UV to assay mometasone furoate (MF) in creams or nasal sprays using the same chromatographic conditions was set up. Methanol:water 80:20 (v/v) (1.0 mL min-1) was used as mobile phase. MF was detected at 248 nm and analyzed in a concentration range from 1.0 to 20.0 µg mL-1. The method provided acceptable theoretical plates, peak simmetry, peak tailing factor and peak resolution a short run (5 min). The method showed specificity, good linearity (r = 0.9999) and the quantification limit was 0.379 µg mL-1. Furthermore, the method was precise (RSD < 2.0%), accurate (recovery > 97%) and robust.
Resumo:
Bioethanol is a strategic biofuel in Brazil. Thus, a strong metrological basis for its measurements is required to ensure the quality and promote its exportation. Recently, Inmetro certified a reference material for water content in bioethanol. This paper presents the results of these studies. The characterization, homogeneity, short-term stability and long-term stability uncertainty contributions values were 0.00500, 0.0166, 0.0355 and 0.0391 mg g-1, respectively. The certificated value for water content of bioethanol fuel was (3.65 ± 0.11) mg g-1. This CRM is the first and up to now the unique in the world.
Resumo:
This work investigated the effect of microwave irradiation (MW) on the ethanolysis rate of soybean and sunflower oils catalyzed by supported Novozyme 435 (Candida antarctica). The effects of tert-butanol, water addition and oil:ethanol molar ratio on transesterification were evaluated under conventional heating (CH), and under optimum reaction conditions (with no added water in the system, 10% tert-butanol and 3:1 ethanol-to-oil molar ratio). The reactions were monitored up to 24 h to determine the conditions of initial reaction velocity. The investigated variables under MW (50 W) were: reaction time (5.0-180 min) and mode of reactor operation (fixed power, dynamic and cycles) in the absence and presence of tert-butanol (10% (w/w). The measured response was the reaction conversion in ethyl esters, which was linked to the enzyme catalytic activity. The results indicated that the use of microwave improved the activity at fixed power mode. A positive effect of the association of tert-butanol and MW irradiation on the catalytic activity was observed. The reaction rate improved in the order of approximately 1.5 fold compared to that under CH with soybean oil. Using soybean oil, the enzymatic transesterification under MW for conversion to FAEE (fatty acid ethyl esters) reached >99% in 3h, while with the use of CH the conversions were about 57% under similar conditions.
Resumo:
The objective of this study was to characterize water application rate, water application pattern width, flow rate, water distribution uniformity and soil loss caused by nozzles of the Low Energy Precision Aplication (LEPA) type Quad-Spray emitter. The study was carried out at the Hydraulic and Irrigation Laboratory of the Department of Engineering at the Federal University of Lavras, in Lavras, state of Minas Gerais - MG, Brazil. Twenty-two (22) LEPA Quad-Spray emitter nozzles were evaluated, with nozzle diameter ranging from 1.59 to 9.92 mm. The experimental design used was entirely randomized, with three replications.Increasing values of nozzle flow rate ranging from 77.44 up to 3,044 L h-1, were obtained with increasing nozzle diameter sizes. Application pattern width ranged from 0.56 up to 3.24m, according to nozzles diameter size. Low values of CDU (maximum of 35.73%) were observed when using the Quad-Spray nozzles. Observed average water application rates covered the range between 68.05 mm h-1 (the lowest value that was obtained with the 2.38mm nozzle) and 258.15 mm h-1 (the highest value that was observed with the 9.92 mm). Average water application rates increased in a simple non-linear function with the increase of nozzle size diameter. However, the weighted average increase in the amount of soil loss by erosion was not related to the increase of weighted average water application values.
Resumo:
In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention time (HRT) in each reactor was 30 h. The volumetric organic loading (VOL) applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d)-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3), stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d)-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved)-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.