78 resultados para Radioactive-phosphorus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High rates of phosphate fertilizers are applied to potato (Solanum tuberosum L.), which may cause antagonistic interactions with other nutrients and limit crop yields when over-supplied. The purpose of this study was to evaluate the influence of phosphorus (P) levels in nutrient solution on P use efficiency, nutritional status and dry matter (DM) accumulation and partitioning of potato plants cv. Ágata. The experiment was carried out in a greenhouse, arranged in a completely randomized block design with four replications. Treatments consisted of seven P levels in nutrient solution (0, 2, 4, 8, 16, 31, and 48 mg L-1). Plants were harvested after 28 days of growth in nutrient solution, and separated in roots, stems and leaves for evaluations. The treatment effects were analyzed by regression analysis. Phosphorus levels of up to 8 mg L-1 increased the root and shoot DM accumulation, but drastically decreased the root/shoot ratio of potato cv. Ágata. Higher P availability increased P concentration, accumulation and absorption efficiency, but decreased P use efficiency. Higher P levels increased the N, P, Mg, Fe, and Mn concentrations in roots considerably and decreased K, S, Cu, and Zn concentrations. In shoot biomass, N, P, K, and Ca concentrations were significantly increased by P applied in solution, unlike Mg and Cu concentrations. Although higher P levels (> 8 mg L-1) in nutrient solution increased P concentration, accumulation and absorption efficiency, the DM accumulation and partitioning of potato cv. Ágata were not affected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus (P) applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm) were collected from a native grassland area and two vineyards, after 14 years (vineyard 1) and 30 years (vineyard 2) of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha-1 year-1 of moist poultry litter; 4) 60 m³ ha-1 year-1 of liquid cattle manure and 5) 40 m³ ha-1 year-1 of liquid swine manure. The 31P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the large number of studies addressing the quantification of phosphorus (P) availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR) and Mixed Resin (MR), to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2) + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV), a sandy clay loam Red Yellow Latosol (LVA), and a sandy loam Yellow Latosol (LA), to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais) at two P rates (75 and 150 mg dm-3), plus three control treatments (each soil without P application) after four contact periods (15, 30, 60, and 120 days) of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction). These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay) and LVA (medium texture) for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of the extractor. For triple superphosphate, both resins extracted higher P levels than Mehlich-1, due to the consumption of this extractor, particularly when used for LV and LVA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In unfertilized, highly weathered tropical soils, phosphorus (P) availability to plants is dependent on the mineralization of organic P (Po) compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and < 0.25 mm under leguminous forest tree species, pasture and "capoeira" (secondary forest) in the 0-10 cm layer of a Red-Yellow Latosol after 90 d of incubation. The type of vegetation cover, soil incubation time and soil size fractions had a significant effect on total P and labile P (Pi and Po) fraction contents. The total average Po content decreased in soil macroaggregates by 25 and 15 % in the > 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of < 0.25 mm. Labile Po was significantly reduced by incubation in the > 2.0 (-50 %) and < 0.25 mm (-76 %) fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po) in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vineyards, if phosphate is applied both before planting and at intervals during growth without consideration of technical criteria, the soil P fractions may be increased and their proportions altered. This study was carried out to evaluate the accumulation of P fractions and the parameters of the adsorption isotherm in a sandy Typic Hapludalf soil in vineyards with a history of successive and excessive phosphate fertilization. In December 2010, two vineyards were selected, one 4 and the other 15 years old, in Urussanga, State of Santa Catarina (Brazil). Three trenches were dug in each area and soil was collected from the 0-5, 5-10 and 10-20 cm depth ranges. The soil samples were dried in a forced-air oven, sieved and subjected to chemical analyses, P chemical fractionation and P adsorption isotherms. Excessive phosphate fertilization, before and during cultivation, particularly in the older vineyard and, consequently, with a longer history of phosphate fertilization, increased the inorganic P concentrations to the depth of 20 cm, especially in labile fractions extracted by anion exchange resin and NaHCO3 in the non-labile fraction, as well as in the non-labile fraction extracted by 1.0 mol L-1 HCl. The application of phosphate fertilizers and the long cultivation period increased the P levels in the organic labile fraction extracted by 0.5 mol L-1 NaHCO3, and especially in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH. Phosphate fertilization of older vineyards, i.e., cultivated for 15 years, increased the amounts of P desorbed in water, indicating a risk of contamination of surface waters and groundwater. The phosphate fertilization before planting, without considering the results of soil analysis, and during cultivation, disregarding the results of soil analysis, leaf analysis and expected yield, led to a reduction in the maximum P adsorption capacity in the 0-5 cm layer of vineyard 2, indicating saturation of part of the reactive particle adsorption sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of animal manure to soil can increase phosphorus availability to plants and enhance transfer of the nutrient solution drained from the soil surface or leached into the soil profile. The aim of this study was to evaluate the effect of successive applications of organic and mineral nutrient sources on the available content, surface runoff and leaching of P forms in a Typic Hapludalf in no-tillage systems. Experiment 1 was set up in 2004 in the experimental area of UFSM, in Santa Maria (RS, Brazil). The treatments consisted of: control (without nutrient application) and application of pig slurry (PS), pig deep-litter (PL), cattle slurry (CS), and mineral fertilizers (NPK). The rates were determined to meet the N crop requirements of no-tillage black oat and maize, grown in the 2010/2011 growing season. The soil solution was collected after each event (rain + runoff or leaching) and the soluble, particulate and total P contents were measured. In November 2008, soil was collected in 2 cm intervals to a depth of 20 cm, in 5 cm intervals to a depth of 40 cm, and in 10 cm intervals to a depth of 70 cm. The soil was dried and ground, and P determined after extraction by anion exchange resin (AER). In experiment 2, samples collected from the Typic Hapludalf near experiment 1 were incubated for 20, 35, 58, 73 and 123 days after applying the following treatments: soil, soil + PS, soil + PL, soil + CS and soil + NPK. Thereafter, the soil was sampled and P was analyzed by AER. The applications of nutrient sources over the years led to an increase in available P and its migration in the soil profile. This led to P transfer via surface runoff and leaching, with the largest transfer being observed in PS and PL treatments, in which most P was applied. The soil available P and P transfer via surface runoff were correlated with the amounts applied, regardless of the P source. However, P transfer by leaching was not correlated with the applied nutrient amount, but rather with the solution amount leached in the soil profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis) in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability) to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3) + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk), and FH 550®), three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5), and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹). A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selection of common bean (Phaseolus vulgaris L.) cultivars with enhanced root growth would be a strategy for increasing P uptake and grain yield in tropical soils, but the strong plasticity of root traits may compromise their inclusion in breeding programs. The aim of this study was to evaluate the magnitude of the genotypic variability of root traits in common bean plants at two ontogenetic stages and two soil P levels. Twenty-four common bean genotypes, comprising the four growth habits that exist in the species and two wild genotypes, were grown in 4 kg pots at two levels of applied P (20 and 80 mg kg-1) and harvested at the stages of pod setting and early pod filling. Root area and root length were measured by digital image analysis. Significant genotype × P level and genotype × harvest interactions in analysis of variance indicate that the genotypic variation of root traits depended on soil nutrient availability and the stage at which evaluation was made. Genotypes differed for taproot mass, basal and lateral root mass, root area and root length at both P levels and growth stages; differences in specific root area and length were small. Genotypes with growth habits II (upright indeterminate) and III (prostrate indeterminate) showed better adaptation to limited P supply than genotypes of groups I (determinate) and IV (indeterminate climbing). Between the two harvests, genotypes of groups II and III increased the mass of basal and lateral roots by 40 and 50 %, respectively, whereas genotypes of groups I and IV by only 7 and 19 %. Values of the genotypic coefficient of determination, which estimates the proportion of phenotypic variance resulting from genetic effects, were higher at early pod filling than at pod setting. Correlations between shoot mass and root mass, which could indicate indirect selection of root systems via aboveground biomass, were higher at early pod filling than at pod setting. The results indicate that selection for root traits in common bean genotypes should preferentially be performed at the early pod-filling stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3) were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P) levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich), remaining phosphorus (P-rem) and particle size, and of the plant tissue, phosphorus levels (foliar P). The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.