46 resultados para RNA HELICASES
Resumo:
As the distribution of Candida species and their susceptibility to antifungal agents have changed, a new means of accurately and rapidly identifying these species is necessary for the successful early resolution of infection and the subsequent reduction of morbidity and mortality. The current work aimed to evaluate ribosomal RNA gene sequencing for the identification of medically relevant Candida species in comparison with a standard phenotypic method. Eighteen reference strains (RSs), 69 phenotypically identified isolates and 20 inconclusively identified isolates were examined. Internal transcribed spaces (ITSs) and D1/D2 of the 26S ribosomal RNA gene regions were used as targets for sequencing. Additionally, the sequences of the ITS regions were used to establish evolutionary relationships. The sequencing of the ITS regions was successful for 88% (94/107) of the RS and isolates, whereas 100% of the remaining 12% (13/107) of the samples were successfully analysed by sequencing the D1/D2 region. Similarly, genotypic analysis identified all of the RS and isolates, including the 20 isolates that were not phenotypically identified. Phenotypic analysis, however, misidentified 10% (7/69) of the isolates. Phylogenetic analysis allowed the confirmation of the relationships between evolutionarily close species. Currently, the use of genotypic methods is necessary for the correct identification of Candida species.
Resumo:
Leishmania RNA virus (LRV) has been shown to be a symbiotic component of Leishmania parasites in South America. Nested retro-transcription polymerase chain reaction was employed to investigate LRV1 presence in leishmaniasis lesions from Brazil. In endemic areas of Rio de Janeiro (RJ), no LRV1 infection was observed even with mucosal involvement. LRV1 was only detected in Leishmania (V.) guyanensis cutaneous lesions from the northern region, which were obtained from patients presenting with disease reactivation after clinical cure of their primary lesions. Our results indicated that the severity of leishmaniasis in some areas of RJ, where Leishmania (V.) brazi-liensis is the primary etiological agent, was not associated with Leishmania LRV1 infection.
Resumo:
Mosquitoes are the culprits of some of the most important vector borne diseases. A species’ potential as a vector is directly dependent on their pattern of behaviour, which is known to change according to the female’s physiological status such as whether the female is virgin/mated and unfed/blood-fed. However, the molecular mechanism triggered by and/or responsible for such modulations in behaviour is poorly understood. Clock genes are known to be responsible for the control of circadian behaviour in several species. Here we investigate the impact mating and blood-feeding have upon the expression of these genes in the mosquito Aedes aegypti . We show that blood intake, but not insemination, is responsible for the down-regulation of clock genes. Using RNA interference, we observe a slight reduction in the evening activity peak in the fourth day after dstim injection. These data suggest that, as in Drosophila , clock gene expression, circadian behaviour and environmental light regimens are interconnected in Ae. aegypti .
Resumo:
Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection.
Resumo:
O objetivo deste trabalho foi avaliar a proteção antiviral específica via RNA de interferência (RNAi) contra o vírus da síndrome da mancha-branca (WSSV), em camarões marinhos (Litopenaeus vannamei). Os camarões foram injetados com uma sequência dsRNA específica (vp28 do envelope viral), seguida por desafio com WSSV após 48 horas. Avaliaram-se o hemograma às 0, 3, 6, 24, 48 e 72 horas após o desafio, e a taxa de mortalidade durante 30 dias. Nos animais tratados com dsRNA vp28, a infecção viral foi limitada, e a sobrevivência (73%) e a "clearance" viral (80%) foram maiores do que nos camarões infectados, não tratados, que apresentaram 100% de mortalidade em cinco dias. Nos camarões tratados com dsRNA, o hemograma diminuiu até 6 horas após o desafio, seguido por aumento, tendo atingido o nível normal em 72 horas. O tratamento com dsRNA vp28 limita a infecção nos camarões por WSSV, restaura as suas condições imunológicas e promove "clearance" viral na maioria dos sobreviventes. Esses resultados são indicativos de que dsRNA vp28 pode servir como ferramenta molecular para combater o WSSV e que o RNAi representa abordagem promissora para controlar doenças virais em camarões cultivados.
Resumo:
ABSTRACT Functional genomic analyses require intact RNA; however, Passiflora edulis leaves are rich in secondary metabolites that interfere with RNA extraction primarily by promoting oxidative processes and by precipitating with nucleic acids. This study aimed to analyse three RNA extraction methods, Concert™ Plant RNA Reagent (Invitrogen, Carlsbad, CA, USA), TRIzol® Reagent (Invitrogen) and TRIzol® Reagent (Invitrogen)/ice -commercial products specifically designed to extract RNA, and to determine which method is the most effective for extracting RNA from the leaves of passion fruit plants. In contrast to the RNA extracted using the other 2 methods, the RNA extracted using TRIzol® Reagent (Invitrogen) did not have acceptable A260/A280 and A260/A230 ratios and did not have ideal concentrations. Agarose gel electrophoresis showed a strong DNA band for all of the Concert™ method extractions but not for the TRIzol® and TRIzol®/ice methods. The TRIzol® method resulted in smears during electrophoresis. Due to its low levels of DNA contamination, ideal A260/A280 and A260/A230 ratios and superior sample integrity, RNA from the TRIzol®/ice method was used for reverse transcription-polymerase chain reaction (RT-PCR), and the resulting amplicons were highly similar. We conclude that TRIzol®/ice is the preferred method for RNA extraction for P. edulis leaves.
Resumo:
Sixteen transgenic yellow passionfruit (Passiflora spp.) plants (R0) were obtained which express a non-translatable transgenic RNA corresponding to the 3' region of the NIb gene and the 5' region of the CP gene, derived from the genome of a Brazilian isolate of Cowpea aphid-borne mosaic virus (CABMV). The transgenic plants were propagated by stem cuttings and challenged by sap inoculation with isolates CABMV-MG1 and CABMV-PE1. One transgenic plant (TE5-10) was resistant to the isolate CABMV-MG1, but susceptible to CABMV-PE1. The remaining transgenic plants developed systemic symptoms, equal to non-transformed plants, when inoculated with either isolate. The absence of virus in TE5-10 plants was confirmed by indirect ELISA. Transcription analysis of the transgene demonstrated that the TE5-10 plant did not accumulate transgenic mRNA, even before inoculation. After inoculation, viral RNA was only detected in plants inoculated with CABMV-PE1. These results confirm that the transgenic plant TE5-10 is resistant to isolate CABMV-MG1, and suggest that the resistance mechanism is post-transcriptional gene silencing, which is already activated in the transgenic plants before virus inoculation.
Resumo:
Até meados do século XX, os vírus eram considerados os representantes mais simples da escala biológica. A descoberta dos RNAs satélites e dos viróides por volta de 1970 foi surpreendente, pois comprovou-se a existência de uma nova classe de moléculas auto-replicativas ainda mais simples, denominada agentes sub-virais. Há indícios de que os viróides e virusóides (que formam uma classe de RNAs satélites), teriam feito parte do "Mundo de RNA" (que precedeu o mundo atual baseado no DNA e proteínas), podendo ser considerados fósseis moleculares dessa era antiga. A simplicidade desses agentes sub-virais e o fato de que a molécula de RNA deve interagir diretamente com fatores do hospedeiro para o desenvolvimento do seu ciclo infeccioso colocam esses patógenos como um modelo para o estudo de processos metabólicos celulares. Nos últimos anos, tem-se observado um volume grande de publicações visando elucidar aspectos da interação viróide/hospedeiro, como os mecanismos da patogênese, movimento dos viróides nas plantas hospedeiras, silenciamento gênico e atividades das ribozimas. Mudanças recentes ocorridas na taxonomia desses patógenos com a criação de famílias, gêneros e espécies, além da descoberta de novos viróides, também têm sido verificadas. A presente revisão visa atualizar o leitor quanto aos recentes avanços nas pesquisas com viróides, principalmente na taxonomia, filogenia e em vários aspectos moleculares da interação viróide/hospedeiro. Estão incluídas também algumas características dos virusóides e sua relação evolutiva com os viróides.
Resumo:
Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS). The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT), viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR), 100% (5/5) were positive for rabies in samples of the tongue and the heart, 80% (4/5) in the kidneys, 40% (2/5) in samples of the salivary glands and the lungs, and 20% (1/5) in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.
Resumo:
Recent research has shown that receptor-ligand interactions between surfaces of communicating cells are necessary prerequisites for cell proliferation, cell differentiation and immune defense. Cell-adhesion events have also been proposed for pathological conditions such as cancer growth, metastasis, and host-cell invasion by parasites such as Trypanosoma cruzi. RNA and DNA aptamers (aptus = Latin, fit) that have been selected from combinatorial nucleic acid libraries are capable of binding to cell-adhesion receptors leading to a halt in cellular processes induced by outside signals as a consequence of blockage of receptor-ligand interactions. We outline here a novel approach using RNA aptamers that bind to T. cruzi receptors and interrupt host-cell invasion in analogy to existing procedures of blocking selectin adhesion and function in vitro and in vivo.
Resumo:
The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing.
Resumo:
Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV) frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV) and an antigenically identical but cytopathic virus (cpBVDV) can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98%) to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.
Resumo:
In order to investigate signal transduction and activation of transcription 3 (STAT3) signaling on angiogenesis in colorectal carcinoma (CRC) after inhibiting STAT3 expression, we constructed the HT-29-shSTAT3 cell line by lentivirus-mediated RNAi. Cell growth was assessed with MTT and the cell cycle distribution by flow cytometry. CRC nude mouse models were established and tumor growth was monitored periodically. On day 30, all mice were killed and tumor tissues were removed. Microvessel density (MVD) was determined according to CD34-positive staining. The expression of vascular endothelial growth factor A (VEGFA), matrix metalloproteinase-2 (MMP2) and basic fibroblast growth factor (FGF2) was monitored by quantitative real-time PCR and Western blot analysis. Knockdown of STAT3 expression significantly inhibited cell growth in HT-29 cells, with a significantly higher proportion of cells at G0/G1 (P < 0.01). Consistently, in vivo data also demonstrated that tumor growth was significantly inhibited in mice injected with HT-29-shSTAT3 cells. MVD was 9.80 ± 3.02 in the HT-29-shSTAT3 group, significantly less than that of the control group (P < 0.01). mRNA and protein levels of VEGFA and MMP2 in the HT-29-shSTAT3 group were significantly lower than in the control group (P < 0.05), but no significant difference was observed in the mRNA or protein level of FGF2 (P > 0.05). Taken together, these results demonstrate that STAT3 signaling is important to the growth of CRC and promotes angiogenesis by regulating VEGFA and MMP2 expression.
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Protein phosphatase magnesium/manganese-dependent 1D (PPM1D) is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role ofPPM1D in bladder cancer (BC) remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA) targeting PPM1D were used to explore the effects ofPPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1Dalso inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA againstPPM1D might be a promising therapeutic strategy for the treatment of BC.