43 resultados para RECOMBINANT HUMAN LH
Resumo:
The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject.
Resumo:
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.
Resumo:
The aim of this work was the partial purification and subsequent evaluation of chitinase expression during the various growth phases of Paracoccidioides brasiliensis. Initially, PbCTS1r was expressed as a recombinant protein and displayed enzymatic activity against 4-MU-[N-acetylglucosamine (GlcNAc)]3 and 4-MU-(GlcNAc)2. Two proteins, 45 kDa and 39 kDa in size, were partially purified from P. brasiliensis yeast crude extract using cation-exchange chromatography coupled with HPLC and were characterised as PbCTS1 and PbCTS2, respectively. Anti-PbCTS1r antibody recognised two proteins in the crude extracts of yeast and the transitional stage between mycelial and yeast phases. In crude extracts of mycelium, only the 45 kDa protein was detected. However, quantitative real-time polymerase chain reaction led to the detection of small quantities of Pbcts2 transcript in the mycelial phase. In the yeast cell wall extract, only the 39 kDa protein was detected. Moreover, both proteins were secreted by the yeast parasitic phase, suggesting that these proteins participate in the modulation of the fungal environment. Phylogenetic analysis of the predicted PbCTS1 and PbCTS2 proteins indicated that they code for distinct chitinases in P. brasiliensis. During evolution, P. brasiliensis could have acquired the paralogues Pbcts1 and Pbcts2 for growth and survival in diverse environments in both saprophytic and parasitic phases.
Resumo:
The serology of human Trypanosoma cruziinfection in the Rio Negro microregion is very complex because of the large numbers of false-positive cases that result from low antibody titres and cross-reactions with other infections. In the present study, we collected 4,880 blood samples on filter paper; of these, indirect immunofluorescence (IIF) was strongly reactive in 221 (4.5%), which were considered to be positive (IIF strongly reactive; high intensity of fluorescence) and weakly reactive in 302 (6.2%), which were considered to be doubtful (IIF weakly reactive; low intensity of fluorescence). The confirmatory test on the serum using at least two of three techniques (IIF, conventional ELISA and recombinant ELISA) on 137 samples that were positive in the screening test only confirmed 33 cases (24.1%). Of the 178 samples that were considered doubtful in the screening test, only 10 (5.6%) were considered to be positive in the confirmatory test. Finally, we recommend that the serological diagnosis of T. cruziinfection in the Amazon region be made using at least two different techniques, for example immunofluorescence and ELISA and confirmed by Western blot analysis when possible.
Resumo:
The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.
Resumo:
Hepatitis C virus (HCV) envelope protein 2 (E2) is involved in viral binding to host cells. The aim of this work was to produce recombinant E2B and E2Y HCV proteins in Escherichia coli and Pichia pastoris, respectively, and to study their interactions with low-density lipoprotein receptor (LDLr) and CD81 in human umbilical vein endothelial cells (HUVEC) and the ECV304 bladder carcinoma cell line. To investigate the effects of human LDL and differences in protein structure (glycosylated or not) on binding efficiency, the recombinant proteins were either associated or not associated with lipoproteins before being assayed. The immunoreactivity of the recombinant proteins was analysed using pooled serum samples that were either positive or negative for hepatitis C. The cells were immunophenotyped by LDLr and CD81 using flow cytometry. Binding and binding inhibition assays were performed in the presence of LDL, foetal bovine serum (FCS) and specific antibodies. The results revealed that binding was reduced in the absence of FCS, but that the addition of human LDL rescued and increased binding capacity. In HUVEC cells, the use of antibodies to block LDLr led to a significant reduction in the binding of E2B and E2Y. CD81 antibodies did not affect E2B and E2Y binding. In ECV304 cells, blocking LDLr and CD81 produced similar effects, but they were not as marked as those that were observed in HUVEC cells. In conclusion, recombinant HCV E2 is dependent on LDL for its ability to bind to LDLr in HUVEC and ECV304 cells. These findings are relevant because E2 acts to anchor HCV to host cells; therefore, high blood levels of LDL could enhance viral infectivity in chronic hepatitis C patients.
Resumo:
We cloned the streptokinase (STK) gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing
Resumo:
The role of different cytokines in the peripheral blood mononuclear cell (PBMC) proliferative response and in in vitro granuloma formation was evaluated in a cross-sectional study with patients with the different clinical forms and phases of Schistosoma mansoni infection, as well as a group of individuals "naturally" resistant to infection named normal endemic (NE). The blockage of IL-4 and IL-5 using anti-IL-4 and anti-IL-5 antibodies significantly reduced the PBMC proliferative response to soluble egg (SEA) and adult worm (SWAP) antigens in acute (ACT), chronic intestinal (INT) and hepatosplenic (HS) patients. Similar results were obtained in the in vitro granuloma formation. Blockage of IL-10 had no significant effect on either assay using PBMC from ACT or HS. In contrast, the addition of anti-IL-10 antibodies to PBMC cultures from INT patients significantly increased the proliferative response to SEA and SWAP as well as the in vitro granuloma formation. Interestingly, association of anti-IL-4 and anti-IL-10 antibodies did not increase the PBMC proliferative response of these patients, suggesting that IL-10 may act by modulating IL-4 and IL-5 secretion. Addition of recombinant IL-10 decreased the proliferative response to undetectable levels when PBMC from patients with the different clinical forms were used. Analysis of IFN-g in the supernatants showed that PBMC from INT patients secreted low levels of IFN-g upon antigenic stimulation. In contrast, PBMC from NE secreted high levels of IFN-g. These data suggest that IL-10 is an important cytokine in regulating the immune response and possibly controlling morbidity in human schistosomiasis mansoni, and that the production of IFN-g may be associated with resistance to infection.
Resumo:
Several genes that influence the development and function of the hypothalamic-pituitary-gonadal-axis (HPG) have been identified. These genes encode an array of transcription factors, matrix proteins, hormones, receptors, and enzymes that are expressed at multiple levels of the HPG. We report the experience of a single Endocrinology Unit in the identification and characterization of naturally occurring mutations in families affected by HPG disorders, including forms of precocious puberty, hypogonadism and abnormal sexual development due to impaired gonadotropin function. Eight distinct genes implicated in HPG function were studied: KAL, SF1, DAX1, GnRH, GnRHR, FSHß, FSHR, and LHR. Most mutations identified in our cohort are described for the first time in literature. New mutations in SF1, DAX1 and GnRHR genes were identified in three Brazilian patients with hypogonadism. Eight boys with luteinizing hormone- (LH) independent precocious puberty due to testotoxicosis were studied, and all have their LH receptor (LHR) defects elucidated. Among the identified LHR molecular defects, three were new activating mutations. In addition, these mutations were frequently associated with new clinical and hormonal aspects, contributing significantly to the knowledge of the molecular basis of reproductive disorders. In conclusion, the naturally occurring genetic mutations described in the Brazilian families studied provide important insights into the regulation of the HPG.
Resumo:
Carboxypeptidase M (CPM) is an extracellular glycosylphosphatidyl-inositol-anchored membrane glycoprotein, which removes the C-terminal basic residues, lysine and arginine, from peptides and proteins at neutral pH. CPM plays an important role in the control of peptide hormones and growth factor activity on the cell surface. The present study was carried out to clone and express human CPM in the yeast Pichia pastoris in order to evaluate the importance of this enzyme in physiological and pathological processes. The cDNA for the enzyme was amplified from total placental RNA by RT-PCR and cloned in the vector pPIC9, which uses the methanol oxidase promoter and drives the expression of high levels of heterologous proteins in P. pastoris. The cpm gene, after cloning and transfection, was integrated into the yeast genome, which produced the active protein. The recombinant protein was secreted into the medium and the enzymatic activity was measured using the fluorescent substrate dansyl-Ala-Arg. The enzyme was purified by a two-step protocol including gel filtration and ion-exchange chromatography, resulting in a 1753-fold purified active protein (16474 RFU mg protein-1 min-1). This purification protocol permitted us to obtain 410 mg of the purified protein per liter of fermentation medium. SDS-PAGE showed that recombinant CPM migrated as a single band with a molecular mass similar to that of native placental enzyme (62 kDa), suggesting that the expression of a glycosylated protein had occurred. These results demonstrate for the first time the establishment of a method using P. pastoris to express human CPM necessary to the development of specific antibodies and antagonists, and the analysis of the involvement of this peptidase in different physiological and pathological processes
Resumo:
Few studies have reported the molecular epidemiological characterization of HIV-1 in the Northern region of Brazil. The present study reports the molecular and epidemiological characterization of 31 HIV-1 isolates from blood donors from the State of Amazonas who donated blood between April 2006 and March 2007. Serum/plasma samples from all donors were screened for HIV antibodies by ELISA and the results confirmed by Western blot analysis. Genomic DNA was extracted from the buffy coat using the Super Quik-Gene-DNA Isolation kit. Nested PCR was performed on the env, gag, and pol regions of HIV-1 using the Gene Amp PCR System 9700. Sequencing reactions were performed using the inner PCR primers and the DYEnamic™ ET Dye Terminator Kit, and phylogenetic analysis was performed using the gag, pol, and env gene sequences. We collected samples from 31 blood donors who tested positive for HIV-1 in confirmatory experiments. The male:female ratio of blood donors was 3.4:1, and the mean age was 32.4 years (range: 19 to 61 years). Phylogenetic analysis showed that subtype B is the most prevalent among Northern Brazilian HIV-1-seropositive blood donors. One HIV-1 subtype C and one circulating recombinant form (CRF_BF) of HIV-1 were identified in the State of Amazonas. This is the first study showing the occurrence of a possible "homogenous" subtype C in this region of Brazil. This finding could contribute to a better characterization of the HIV-1 strains that circulate in the country.
Resumo:
Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.
Resumo:
Chlorella vulgaris has the gene of n-3 fatty acid desaturase (CvFad3), which can synthesize the precursor of n-3 polyunsaturated fatty acids (PUFAs) or convert n-6 to n-3 PUFAs. The objective of the present study was to examine whether the CvFad3 gene from C. vulgaris can be functionally and efficiently expressed in human breast cancer cells and whether its expression can exert a significant effect on cell fatty acid composition. We inserted the CvFad3 gene into the plasmid pEGFP-C3 to construct the eukaryotic expression vector pEGFP-C3-n-3 and to express the n-3 Fad gene in human breast cancer cells (MCF-7 cells). Transfection of MCF-7 cells with the recombinant vector resulted in a high expression of n-3 fatty acid desaturase. Lipid analysis indicated that the ratio of n-6/n-3 PUFAs was decreased from 6:1 in the control cells to about 1:1 in the cells expressing the n-3 fatty acid desaturase. Accordingly, the CvFad3 gene significantly decreased the ratio of n-6/n-3 PUFAs of the MCF-7 cell membrane. The expression of the CvFad3 gene can decrease cell proliferation and promote cell apoptosis. This study demonstrates that the CvFad3 gene can dramatically balance the ratio of n-6/n-3 PUFAs and may provide an effective approach to the modification of the fatty acid composition of mammalian cells, also providing a basis for potential applications of its transfer in experimental and clinical settings.