62 resultados para Quinine hydrochloride
Resumo:
World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral), methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.
Resumo:
From March 1996 to August 1997, a study was carried out in a malaria endemic area of the Brazilian Amazon region. In vivo sensitivity evaluation to antimalarial drugs was performed in 129 patients. Blood samples (0.5 ml) were drawn from each patient and cryopreserved to proceed to in vitro studies. In vitro sensitivity evaluation performed using a radioisotope method was carried out with the cryopreserved samples from September to December 1997. Thirty-one samples were tested for chloroquine, mefloquine, halofantrine, quinine, arteether and atovaquone. Resistance was evidenced in 96.6% (29/30) of the samples tested for chloroquine, 3.3% (1/30) for quinine, none (0/30) for mefloquine and none for halofantrine (0/30). Overall low sensitivity was evidenced in 10% of the samples tested for quinine, 22.5% tested for halofantrine and in 20% tested for mefloquine. Means of IC 50 values were 132.2 (SD: 46.5) ng/ml for chloroquine, 130.6 (SD: 49.6) ng/ml for quinine, 3.4 (SD: 1.3) ng/ml for mefloquine, 0.7 (SD: 0.3) ng/ml for halofantrine, 1 (SD: 0.6) ng/ml for arteether and 0.4 (SD: 0.2) ng/ml for atovaquone. Means of chloroquine IC 50 of the tested samples were comparable to that of the chloroquine-resistant strain W2 (137.57 ng/ml) and nearly nine times higher than that of the chloroquine-sensitive strain D6 (15.09 ng/ml). Means of quinine IC 50 of the tested samples were 1.7 times higher than that of the low sensitivity strain W2 (74.84 ng/ml) and nearly five times higher than that of the quinine-sensitive strain D6 (27.53 ng/ml). These results disclose in vitro high resistance levels to chloroquine, low sensitivity to quinine and evidence of decreasing sensitivity to mefloquine and halofantrine in the area under evaluation.
Resumo:
In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.
Resumo:
Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.
Resumo:
'Aurora-1' peaches establishes an interesting alternative as a minimally processed product, due to its characteristics like flavor, color, smell, and also because of its handling resistance. However, it has a short shelf life after a fresh-cut due to enzymatic browning and stone cavity collapse. The main purpose of this research was to test the additive with antioxidant effect to prevent browning in minimally processed 'Aurora-1' peaches. The minimal processing consists of washing, sanitizing, peelings and fruit stone extraction. After that, longitudinal cuts were made to obtain eight segments per fruit. The slices were immersed into the following treatment solutions: control (immersion in 2% ascorbic acid); 2% ascorbic acid + 2% calcium chloride; 1% sodium isoascorbate; 1% citric acid; 1% L-cysteine hydrochloride. The products were placed into rigid polystyrene trays branded MEIWA M-54, covered with 14 µm PVC film (OmnifilmTM) and kept in cold storage at 3ºC ± 2ºC and 65% RH for twelve days, and evaluated each three days. Appraised variables were appearance, soluble solids, titratable acidity, soluble carbohydrates and reducing sugars, total and soluble pectin, ascorbic acid, and peroxidase and polyphenol oxidase enzyme activity. L-cysteine gave to the minimally processed products a shelf life of twelve days, limmited by off-flavor. The treatment with ascorbic acid was efficient to maintainthe ascorbic acid content, with a shelf-life of nine days, limited by enzymatic browning.
Resumo:
A flow injection (FI) spectrophotometric procedure is proposed for the determination of vitamin B6 (pyridoxine hydrochloride) in pharmaceutical preparations. Powdered samples containing from 2.5 to 4.5 mg, were previously dissolved in 0.1 mol L-1 phosphate buffer solution (pH 7.0) and a volume of 500 muL was injected directly into a carrier stream consisting of this same phosphate buffer solution, flowing at 4.4 mL min-1. The stable blue indophenol dye produced in the oxidation of pyridoxine hydrochloride by potassium hexacyanoferrate(III) and N,N-diethyl-p-phenylenediamine solution was directly measured at 684 nm. Vitamin B6 was determined in five pharmaceutical preparations in the 0.5 to 6.0 mg L-1 concentration range (calibration graph: A= -0.00499 + 0.11963 C; r= 0.9991, where A is the absorbance and C is the vitamin B6 concentration in mg L-1), with a detection limit of 0.02 mg L-1 (3 Sblank/slope). The recovery of this vitamin from three samples ranged from 97.5 to 103.3 %. The analytical frequency was 62 h-1 and r.s.d. were less than 2% for solutions containing 1.0 and 3.0 mg L-1 vitamin B6 (n= 10). The results obtained for the determination of vitamin B6 in commercial formulations were in good agreement with those obtained by a spectrophotometric procedure (r=0.9997) and also with the label values (r= 0.9998).
Resumo:
Quinine and quinidine are well-known 4-quinolinecarbinolamines that exhibit antimalarial activity, but, in contrast, their epimers 9-epiquinine and 9-epiquinidine are almost inactive. Literature data are conflicting in describing the 4-quinolinecarbinolamine interaction mode with the molecular target, the ferriprotoporphyrin IX [Fe(III)PPIX]. In the present paper, a pharmacophore is proposed based on the binding of the non-aromatic nitrogen to the iron atom. The 4-quinolinecarbinolamine antimalarials were superimposed on the pharmacophore under consideration and complexes with Fe(III)PPIX were constructed. Conformational analyses of the complexes were performed applying the MM+ molecular mechanics method. The analysis of the complexes showed that the proposed ligand mode is possible although it does not explain the activity differences between epimers. A discussion of the structural aspects is also provided.
Resumo:
In this work, the artificial neural networks (ANN) and partial least squares (PLS) regression were applied to UV spectral data for quantitative determination of thiamin hydrochloride (VB1), riboflavin phosphate (VB2), pyridoxine hydrochloride (VB6) and nicotinamide (VPP) in pharmaceutical samples. For calibration purposes, commercial samples in 0.2 mol L-1 acetate buffer (pH 4.0) were employed as standards. The concentration ranges used in the calibration step were: 0.1 - 7.5 mg L-1 for VB1, 0.1 - 3.0 mg L-1 for VB2, 0.1 - 3.0 mg L-1 for VB6 and 0.4 - 30.0 mg L-1 for VPP. From the results it is possible to verify that both methods can be successfully applied for these determinations. The similar error values were obtained by using neural network or PLS methods. The proposed methodology is simple, rapid and can be easily used in quality control laboratories.
Resumo:
We have developed an easy method for the synthesis of thirteen compounds derived from 1,2,4-triazoles through a carboxylic acid and hydrazinophthalazine reaction, with a 75-85% yield mediated by the use of agents such as 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride and 1-hydroxybenzotriazole. The operational simplicity of this method and the good yield of products make it valuable for the synthesis of new compounds with pharmacological activity.
Resumo:
A UV spectrophotometric method was developed and validated and a chromatographic method was adapted from the American Pharmacopeia for the analysis of Fluoxetine Hydrochloride capsules. Ethanol was used as solvent for the spectrophotometric method, with detection and determination at 276 nm. The separation for the chromatographic method was carried out using the reversed-phase column LC-8, triethylamine buffer, stabilizer free tetrahydrofuran and methanol (5:3.5:1.5), pH 6.0 as mobile phase and detection at 227 nm. The results obtained for both methods showed to be accurate, precise, robust and linear over the concentration range 100.00 - 300.00 µg/mL and 40.00 - 80.00 µg/mL of fluoxetine hydrochloride for the spectrophotometric and chromatographic methods, respectively. The accuracy of the methods was evaluated by a recovery test and showed results between 98.89 and 101.10%.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
A simple, precise, rapid and low-cost conductometric titration method for the determination of metformin hydrochloride (MET) in pharmaceuticals using silver nitrate as titrant is proposed. The method was based on the chemical reaction between the chloride of metformin hydrochloride molecule and Ag(I) ions, yielding the precipitate AgCl(s). The method was applied for MET determination in three pharmaceuticals and the obtained results with proposed method were in close agreement with those results obtained using an official method of the British Pharmacopoeia, at a 95% confidence level.
Resumo:
After 470 years, a history of development, international seed smuggling and scientific development that caused deep changes in our society, has reached an end. In 1638, the countess of Chinchón contracted a disease while in the Amazon rain forest and was healed by a potion used by the native inhabitants. In 1856, William H. Perkin while attempting to obtain synthetic quinine, discovered the mauveína, a molecule that changed the world. The synthesis of quinine was also the subject of a bitter controversy among two excellent scientists of the 20th century. During centuries, quinine was the only hope against malaria disease and its exploration almost extinguished the Cinchona tree.
Resumo:
The aim of this work was the development of a dissolution method for benznidazole (BNZ) tablets. Three different types of dissolution media, two stirring speeds and apparatus 2 (paddle) were used. The accomplishment of the drug dissolution profiles was compared through the dissolution efficiency. The assay was performed by spectrophotometry at 324 nm. The better conditions were: sodium chloride\hydrochloride acid buffer pH 1.2 with stirring speed of 75 rpm, volume of 900 mL and paddle as apparatus. Ahead of the results it can be concluded that the method developed consists in an efficient alternative for assays of dissolution for benznidazole tablets.
Resumo:
A simple, accurate and precise flow-injection turbidimetric procedure for the determination of fluoxetine hydrochloride in pharmaceutical formulations is reported. The procedure is based on the precipitation of chloride of fluoxetine hydrochloride with silver nitrate solution and the yielded insoluble AgCl(s) was monitored at 420 nm. The analytical curve was linear in the fluoxetine hydrochloride concentration range 3.0 x 10-5 - 5.0 x 10-4 mol L-1 with a detection limit of 10 µmol L-1 and, a sample throughout of 60 h-1.