38 resultados para Programmed Cell Death
Resumo:
Listeria monocytogenes, etiological agent of severe human foodborne infection, uses sophisticated mechanisms of entry into host cytoplasm and manipulation of the cellular cytoskeleton, resulting in cell death. The host cells and bacteria interaction may result in cytokine production as Tumor Necrosis Factor (TNF) alpha. Hepatocytes have potential to produce pro-inflammatory cytokines as TNF-alpha when invaded by bacteria. In the present work we showed the behavior of hepatocytes invaded by L. monocytogenes by microscopic analysis, determination of TNF-alpha production by bioassay and analysis of the apoptosis through TUNEL technique. The presence of bacterium, in ratios that ranged from 5 to 50,000 bacteria per cell, induced the rupture of cellular monolayers. We observed the presence of internalized bacteria in the first hour of incubation by electronic microscopy. The levels of TNF-alpha increased from first hour of incubation to sixth hour, ranging from 0 to 3749 pg/mL. After seven and eight hours of incubation non-significant TNF-alpha levels decrease occurred, indicating possible saturation of cellular receptors. Thus, the quantity of TNF-alpha produced by hepatocytes was dependent of the incubation time, as well as of the proportion between bacteria and cells. The apoptosis rate increased in direct form with the incubation time (1 h to 8 + 24 h), ranging from 0 to 43%, as well as with the bacteria : cells ratio. These results show the ability of hepatocyte invasion by non-hemolytic L. monocytogenes, and the main consequences of this phenomenon were the release of TNF-alpha by hepatocytes and the induction of apoptosis. We speculate that hepatocytes use apoptosis induced by TNF-alpha for release bacteria to extracellular medium. This phenomenon may facilitate the bacteria destruction by the immune system.
Resumo:
Trypanosoma evansi is a blood protozoan parasite of the genus Trypanosoma which is responsible for surra (Trypanosomosis) in domestic and wild animals. This study addressed apoptotic-like features in Trypanosoma evansi in vitro. The mechanism of parasite death was investigated using staurosporine as an inducing agent. We evaluated its effects through several cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, maintenance of plasma membrane integrity, and mitochondrial trans-membrane potential. For access to these features we have used the flow cytometry and fluorescence microscopy with cultures in the stationary phase and adjusted to a density of 10(6) cells/mL. The apoptotic effect of staurosporine in T. evansi was evaluated at 20 nM final concentration. There was an increase of phosphatidylserine exposure, whereas mitochondrial potential was decreased. Moreover, no evidence of cell permeability increasing with staurosporine was observed in this study, suggesting the absence of a necrotic process. Additional studies are needed to elucidate the possible pathways associated with this form of cell death in this hemoparasite.
Resumo:
SUMMARY Inflammation due to Shigella flexneri can cause damage to the colonic mucosa and cell death by necrosis and apoptosis. This bacteria can reach the bloodstream in this way, and the liver through portal veins. Hypoxia is a condition present in many human diseases, and it may induce bacterial translocation from intestinal lumen. We studied the ability of S. flexneri to invade rat hepatocytes and Caco-2 cells both in normoxic and hypoxic microenvironments, as well as morphological and physiological alterations in these cells after infection under hypoxia. We used the primary culture of rat hepatocytes as a model of study. We analyzed the following parameters in normoxic and hypoxic conditions: morphology, cell viability, bacterial recovery and lactate dehydrogenase (LDH) released. The results showed that there were fewer bacteria within the Caco-2 cells than in hepatocytes in normoxic and hypoxic conditions. We observed that the higher the multiplicity of infection (MOI) the greater the bacterial recovery in hepatocytes. The hypoxic condition decreased the bacterial recovery in hepatocytes. The cytotoxicity evaluated by LDH released by cells was significantly higher in cells submitted to hypoxia than normoxia. Caco-2 cells in normoxia released 63% more LDH than hepatocytes. LDH increased 164% when hepatocytes were submitted to hypoxia and just 21% when Caco-2 cells were in the same condition. The apoptosis evaluated by Tunel was significantly higher in cells submitted to hypoxia than normoxia. When comparing hypoxic cells, we obtained more apoptotic hepatocytes than apoptotic Caco-2 cells. Concluding our results contribute to a better knowledge of interactions between studied cells and Shigella flexneri. These data may be useful in the future to define strategies to combat this virulent pathogen.
Resumo:
Abstract Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies.
Resumo:
To determine the genomic polymorphism and biological properties present in HIV-1 Brazilian isolates, were analyzed five viral isolates obtained from patients residing in Rio de Janeiro (P1 and P5), São Paulo (P3) and Bahia (P2 and P4) states. For each viral isolate in vitro characteristics such as replication rate, syncytium-inducing capacity and cell death were observed in lymphoblastoid (H9, CEM and peripheral blood mononuclear cells) as well as monocytoid (U937) cells. In addition, the evaluation of the restriction fragment lenght polymorphism of these isolates was also performed using a panel of endonucleases such as Hind III, Bgl II, Sac I, Pst I, Kpn I and Eco RI. One of the isolates (P1), showed the highest phenotypic and genotypic divergence, when compared to others. The results found suggest a HIV heterogeneity in Brazil similar to that already described in other regions of the world.
Resumo:
The nuclear phenotypes of Malpighian tubule epithelial cells of 5th instar male nymphs of the blood-sucking insect Panstrongylus megistus were studied immediately after a short (1 h) cold shock at 0ºC, and 10 and 30 days later. The objective was to compare the responses to a cold shock with those known to occur after hyperthermia in order to provide insight into the cellular effect of cold in this species. Nuclei which usually exhibited a conspicuous Y chromosome chromocenter were the most frequent phenotype in control and treated specimens. Phenotypes in which the heterochromatin was unravelled, or in which there was nuclear fusion or cell death were more abundant in the shocked specimens. Most of the changes detected have also been found in heat-shocked nymphs, except for nuclear fusion which generates giant nuclei and which appeared to be less effective or necessary than that elicited after heat shock. Since other studies showed that a short cold shock does not affect the survival of more than 14% of 5th instar nymphs of P. megistus with domestic habit and can induce tolerance to a prolonged cold shock, heat shock proteins proteins are probably the best candidates for effective protection of the cells and the insects from drastic damage caused by low temperature shocks.
Resumo:
The nuclear phenotypes of Malpighian tubule cells in fifth instar nymphs of Triatoma infestans, one of the most important vectors of Chagas disease, were studied following sequential shocks at 0ºC, separated by intervals of 8 h and 24 h at 30ºC, under conditions of moderate fasting and full nourishment. The insects pertained to colonies reared in the laboratory and originated from domestic specimens collected in the Brazilian states of São Paulo (north) and Minas Gerais (south). Since nuclear phenotypes in this species are affected by single cold shocks, it was expected that these phenotypes could also be changed by sequential shocks. Nuclear phenotypes indicative of mechanisms of cell survival (nuclear fusion and heterochromatin decondensation) and cell death (apoptosis and necrosis) were observed concomitantly in all the conditions tested. Nuclear fusion and heterochromatin decondensation were not found relevant for the presumed acquisition of the cold-hardening response in T. infestans. The decreased frequency of apoptosis and necrosis following sequential cold shocks including under fasting conditions, indicated that tolerance to sequential cold shocks occurred in T. infestans of the mentioned origin.
Resumo:
The bacterium Bacillus thuringiensis (Bt) produces parasporal crystals containing delta-endotoxins responsible for selective insecticidal activity on larvae. Upon ingestion, these crystals are solubilized in the midgut lumen and converted into active toxins that bind to receptors present on the microvilli causing serious damage to the epithelial columnar cells. We investigated the effect of these endotoxins on larvae of the Simulium pertinax, a common black fly in Brazil, using several concentrations during 4 h of the serovar israelensis strain IPS-82 (LFB-FIOCRUZ 584), serotype H-14 type strain of the Institute Pasteur, Paris. Light and electron microscope observations revealed, by time and endotoxin concentration, increasing damages of the larvae midgut epithelium. The most characteristic effects were midgut columnar cell vacuolization, microvilli damages, epithelium cell contents passing into the midgut lumen and finally the cell death. This article is the first report of the histopathological effects of the Bti endotoxins in the midgut of S. pertinax larvae and the data obtained may contribute to a better understanding of the mode of action of this bacterial strain used as bioinsecticide against black fly larvae.