80 resultados para Process mean
Resumo:
Background: Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease characterized by an elevation in the serum levels of total cholesterol and of low-density lipoproteins (LDL- c). Known to be closely related to the atherosclerotic process, FH can determine the development of early obstructive lesions in different arterial beds. In this context, FH has also been proposed to be a risk factor for peripheral arterial disease (PAD). Objective: This observational cross-sectional study assessed the association of PAD with other manifestations of cardiovascular disease (CVD), such as coronary artery and cerebrovascular disease, in patients with heterozygous FH. Methods: The diagnosis of PAD was established by ankle-brachial index (ABI) values ≤ 0.90. This study assessed 202 patients (35% of men) with heterozygous FH (90.6% with LDL receptor mutations), mean age of 51 ± 14 years and total cholesterol levels of 342 ± 86 mg /dL. Results: The prevalences of PAD and previous CVD were 17% and 28.2 %, respectively. On multivariate analysis, an independent association between CVD and the diagnosis of PAD was observed (OR = 2.50; 95% CI: 1.004 - 6.230; p = 0.049). Conclusion: Systematic screening for PAD by use of ABI is feasible to assess patients with FH, and it might indicate an increased risk for CVD. However, further studies are required to determine the role of ABI as a tool to assess the cardiovascular risk of those patients.
Resumo:
Background:The aging process promotes a progressive increase in chronic-degenerative diseases. The effect of these diseases on the functional capacity has been well recognized. Another health parameter concerns “quality of life related to health”. Among the elderly population, cardiovascular diseases stand out due to the epidemiological and clinical impact. Usually, these diseases have been associated with others. This set of problems may compromise both independence and quality of life in elderly patients who seek cardiologic treatment. These health parameters have not been well contemplated by cardiologists.Objective:Evaluating, among the elderly population with cardiovascular disease, which are the most relevant clinical determinants regarding dependence and quality of life.Methods:This group was randomly and consecutively selected and four questionnaires were applied: HAQ, SF-36, PRIME-MD e Mini Mental State.Results:The study included 1,020 elderly patients, 63.3% women. The group had been between 60 and 97 years-old (mean: 75.56 ± 6.62 years-old). 61.4% were independent or mild dependence. The quality of life total score was high (HAQ: 88.66 ± 2.68). 87.8% of patients had a SF-36 total score > 66. In the multivariate analysis, the association between diagnoses and high degrees of dependence was significant only for previous stroke (p = 0.014), obesity (p < 0.001), lack of physical activity (p = 0.016), osteoarthritis (p < 0.001), cognitive impairment (p < 0.001), and major depression (p < 0.001). Analyzing the quality of life, major depression and physical illness for depression was significantly associated with all domains of the SF-36.Conclusion:Among an elderly outpatient cardiology population, dependence and quality of life clinical determinants are not cardiovascular comorbidities, especially the depression.
Resumo:
Abstract Background: Excessive weight is a cardiovascular risk factor since it generates a chronic inflammatory process that aggravates the endothelial function. Objective: To evaluate the endothelial function in individuals with excess weight and mild dyslipidemia using brachial artery flow-mediated dilation (BAFMD), and the association of endothelial function with anthropometric and biochemical variables. Methods: Cross-sectional study that included 74 individuals and evaluated anthropometric variables (body mass index [BMI], waist-hip ratio [WHR], waist circumference [AC], and percentage of body fat [PBF]), biochemical (blood glucose, insulinemia, ultrasensitive C-reactive protein, fibrinogen, total cholesterol, HDL-cholesterol, triglycerides, and LDL-cholesterol) and endothelial function (BAFMD, evaluated by ultrasound). The statistical analysis was performed with SPSS, version 16.0. To study the association between the variables, we used chi-square, Student's t and Mann-Whitney tests, and Pearson's correlation. Logistic regression analyzed the independent influence of the factors. Values of p < 0.05 were considered significant. Results: The participants had a mean age of 50.8 years, and 57% were female. BMI, WC, WHR, and PBF showed no significant association with BAFMD. The male gender (p = 0.02) and higher serum levels of fibrinogen (p = 0.02) were significantly and independently associated with a BAFMD below 8%. Conclusions: In individuals with excess weight and mild untreated dyslipidemia, male gender and higher levels of fibrinogen were independently associated with worse BAFMD.
Resumo:
A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
1 - This paper is a joined publication of the Dept. of Genetics, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, and Secção de Citricultura e Frutas Tropicais, Instituto Agronômico, de Campinas, and deal with the number of seed per fruit and the polyembryony in Citrus, with special reference to the pummelos (C. grandis). 2 - For C. pectinifera, hibrid limon x acid lime, C. histrix and Citrus sp. the mean of seeds per fruit is 5,8 - 17,3 - 30,2 -94,6; for 14 pummelos the average was 100 and the range of variation 11 to 185 seeds per fruit. For the four above mentioned Citrus the cotyledons were classified into 3 types: big (near 8 mm.), medium (near 6 mm) and small (near 4 mm) and for the pummelos there was only one size of cotyledons, about 10 mm (table 1). 3 - The polyembryony was determined by two processes: a) counting of the embryos in the mature seed; b) counting after germination in flats or seed-beds. The rasults obtained are in table 2; the process a gave larger results than process b.The following pummelos are monoembryonics: melancia, inerme, Kaune Paune, sunshine, vermelha, Singapura, periforme, Zamboa, doce, Indochina, Lau-Tau, Shantenyau and Siamesa. Sometime it was found a branching of the main stem that gave a impression of polyembryonic seeds. 4 - It was shown by the x2 test that the distribution of embryo numbers fits the Poisson's series (table 2) in both processes. 5 - It is discussed in table 2 the variability of polyembryony for the following cases: a) between plants, within years. The teste for the differences of mean of polyembryony between 3 plants of C. pectinifera is statistically significant in 1948 and 1949; b) between yields of the same plant, within year. The same case of C. pectinifera may be used for this purpose; c) between process, within year. It is shown in table 3, for C. pectinifera and the hibrid "limon x acid lime" that there is a statistically signicicant between both process above mentioned.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.
Resumo:
The engineers of the modern University City are constructing a graceful bridge, named PONTE OSWALDO CRUZ, that crosses a portion of the Guanabara Bay (Fig. 1). The work at west pillar stopped for 3 years (The concret structure in Est. 1). As it will be seen from n.º 1 5 of the fig. 1, Est. I, the base of the structure will have five underground boxes of reinforcement, but, to-day they are just like as five uncovered water ponds, until at present: May 1963. (Est. I fig. 3, n.º 3 pond n.º 3; A. old level of the water; B. actual level of the water; c. green water; E. mass of bloom of blue algae Microcystis aeruginosa). Soon after SW portion, as 5 cells in series, of the pillar abutments, and also the NE portion nearly opposite in the Tibau Mount will be filled up with earth, a new way will link Rio City and the University City. We see to day Est. I, fig. 1 the grasses on the half arenous beach of the Tibau Point. These natural Cyperaceae and Gramineae will be desappear because of so a new road, now under construction, when completed will be 33 feet above the mean sea level, as high as the pillar, covering exactly as that place. Although rainfall was the chief source of water for these ponds, the first water (before meterorological precipitations of whatever first rain it might fall) was a common tap water mixed with Portland Cement, which exuded gradually through the pores of the concret during its hardenning process. Some data of its first cement water composition are on the chemical table, and in Tab. n.º 4 and "Resultado n.º 1". The rain receiving surface of each pond were about 15 by 16 feet, that is, 240 square feet; when they were full of water, their depth was of 2 feet 3", having each pond about 4,000 gallons. Climatic conditions are obviously similar of those of the Rio de Janeiro City: records of temperature, of precipitation and evaporation are seen on the graphics, figs. 2, 3, 4. Our conceptions of 4 phases is merely to satisfy an easy explanation thus the first phase that of exudation of concrete. We consider the 2nd. phase formation of bacterian and cyanophycean thin pellicel. 3rd. phase - dilution by rains, and fertilisation by birds; the 4th phase - plankton flora and fauna established. The biological material arrived with the air, the rains, and also with contaminations by dusts; with big portion of sand, of earth, and leaves of trees resulted of the SW wind actions in the storming days (See - Est. I, fig. 3, G. - the mangrove trees of the Pinheiro Island). Many birds set down and rest upon the pillar structure, its faeces which are good fertilizers fall into the ponds. Some birds were commonly pigeons, black ravens, swallows, sparrows and other sea mews, moor hens, and a few sea birds of comparatively rare occurence. We get only some examples of tropical dust contaminated helioplankton, of which incipient observations were been done sparcely. See the systematic list of the species of plankters. Phytoplankters - Cyanophyta algae as a basic part for food of zooplankters, represented chiefly by rotiferse, water-fleas Moinodaphnia and other Crustacea: Ostracoda Copepoda and Insecta: Chironomidae and Culicidae larvae. The polysaprobic of septic irruptions have not been done only by heating in summer, and, a good reason of that, for example: when the fifth pond was in polysaprobic phase as the same time an alike septic phase do not happened into the 3rd. pond, therefore, both were in the same conditions of temperature, but with unlike contaminations. Among the most important aquatic organisms used as indicatiors of pollution - and microorganisms of real importance in the field of sanitary science, by authorities of renown, for instance: PALMER, PRESCOTT, INGRAM, LIEBMANN, we choose following microalgae: a) The cosmopolite algae Scenedesmus quadricuada, a common indicator in mesosaprobio waters, which lives between pH 7,0 and it is assimilative of NO[3 subscripted] and NH[4 subscripted]. b) Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c) Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis) when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d) Analcystis cyanea (= M. aeruginosa) as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e) Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f) As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent). The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L. In these ponds Asplanchna lived in 0,2 P.PO[4 subscripted]. (Remember the hydobiological observations foreign to braslian waters refer only from 0.06 to 0,010 mg. L. P.PO[4 subscripted]; and they refer resistance to 0.8 N.NH[4 subscripted]). By our data, that rotiger resist commonly to 1.2 until 1.8 mg. L.N.NH[4 subscripted]; here in our ponds and, when NO[2 subscripted] appears Asplanchna desappears. It may be that Asplanchna were devoured by nitrite resistant animals of by Culicidae or other mosquitoes devoured by Due to these facts the number and the distribution of Asplanchna varies considerabley; see - plates of plankton successions. g) Brachionus one of the commonest members of class Rotatoria was frquently found in abundance into the ponds, and we notice an important biological change produce by the rotifer Brachonus colyciflorus: the occurence of its Brachionus clayciflorus forms pallas, is rare in Brazil, as we know about this. h) When we found the water flea MOinodaphnia we do not record simultanous presence of the blue algae Agmenellun (= Merismopedia).
Resumo:
Tissue parasitism, inflammatory process (histologic methods) and sympathetic denervation (glyoxylic acid-induced histofluorescence for demonstration of catecholamines) were studied in the heart (atrium and verntricle) and the submandibular gland of rats infected with the Y strain of Trypanosoma cruzi. In the heart paralleling intense parasitism and inflammatory process, the sympathetic denervation started at day 6 of infection and at the end of the acute phase (day 20) practically no varicose nerve terminals were found in both myocardium and vessels. In the submandibular gland, in spite of the rarity of anastigote pseudocysts and the scarcity of inflammatory foci, slight to moderate (days 13-15 of infection) or moderate to severe denervation (day 20) was found. At day 120 of infection both organs exhibited normal pattern of sympathetic innervation and only the heart showed some inflammatory foci and rare psudocysts (ventricle). Our data suggest the involvement of circulating factors in the sympathetic denervation phenomena but indicate that local inflammatory process is, at least, an aggravating factor.
Resumo:
Pulmonary infection on cystic fibrosis (CF) patients are associated with a limited qualitative number of microorganisms. During the colonization process, Staphylococcus aureus usually preceedes Pseudomonas aeruginosa. This latter is at first non-mucoid, being replaced or associated to a mucoid morphotype which is rare in other diseases. In 1980, Pseudomonas cepacia appeared as an important agent in CF pulmonary infections with a mean frequency of about 6.1% isolations in different parts of the world. The primus colonization mainly occurs in the presence of pre-existent tissue lesions and the clinical progress of the disease is variable. In some patients it can be fulminant; in others it can cause a gradual and slow decrease in their pulmonary functions. The concern with this germ isolation is justified by its antibiotic multiple resistence and the possibility of direct transmission from a colonized patient to a non-colonized one. We reported the first case of P. cepacia infection in a CF patient in our area. The microbiological attendance to this patient had been made from 1986 to 1991 and the first positive culture appeared in 1988. The sensitivity profile showed that the primus colonization strain was sensitive to 9 of 17 tested antibiotics, however in the last culture the strain was resistent to all antibiotics. These data corroborate the need for monitoring the bacterial flora on CF patients respiratory system.
Resumo:
Several factors make the local production of Bacillus thuringiensis (Bt) highly appropriate for pest control in developing nations. Bt can be cheaply produced on a wide variety of low cost, organic substrates. Local production results in considerable savings in hard currency which otherwise would be spent on importation of chemical and biological insecticides. The use of Bt in Brazil has been limited in comparison with chemical insecticides. Although Bt is imported, some Brazilian researchers have been working on its development and production. Fermentation processes (submerged and semi-solid) were applied, using by-products from agro-industries. As the semi-solid fermentation process demonstrated to be interesting for Bt endotoxins production, it could be adopted for small scale local production. Although promising results had been achieved, national products have not been registered due to the absence of a specific legislation for biological products. Effective actions are being developed in order to solve this gap. Regardless of the biocontrol agents being considered atoxic and harmless to the environment, information related to direct and indirect effects of microbials are still insufficient in many cases. The risk analysis of the use of microbial control agents is of upmost importance nowadays, and is also discussed.
Resumo:
Field work research on population dynamic of snails from the regions of Belo Horizonte and Lagoa Santa give much information about interactions among two or more species of mollusks: Pomacea haustrum, Biomphalaria glabrata, B. tenagophila, B. straminea and Melanoides tuberculata. Data ranging from two years to several decades ago suggest that the Pampulha reservoir is like a cemetery of B. glabrata and B. straminea, species that coexist for more than 14 years in a small part of a stream, whereas only B. glabrata lives in all the streams of the basin. In the last ten to twenty years B. tenagophila has coexisted with P. haustrum and M. tuberculata in the Serra Verde ponds and in the Pampulha dam. However these species have not settled in any of the brooks, except temporarily. The data suggest that the kind of biotope and the habitat conditions are decisive factors for the permanence of each species in its preferencial biotope. B. glabrata, natural from streams and riverheads, quickly disappears from the reservoirs and ponds where it coexists with other species for a short time, independently of the competitive process. Competition needs to be better studied, since in Central America and Caribean islands this kind of study has favored the biological control of planorbid species.
Resumo:
Cold acclimatization (4-5°C) is accompanied by 2-3 fold increase of brown adipose tissue (BAT). This rapid growth of interscapular BAT was studied after histamine depletion. In control rats maintained at room temperature (28 ± 2°C) the BAT histamine content was 23.4 ± 5.9 (mean ± SD) µg/g of tissue and cold acclimatization (5±1°C) produced a significant increase of BAT weight, but reduced the histamine content to 8.4 ± 1.9 µg/g. The total weight of BAT after 20 days of acclimatization was unaffected by depletion of histamine due to compound 48/80. The low level of histamine in BAT of cold acclimatized rats could be due to a fast rate of amine utilization; alternatively an altered synthesis or storage process may occur during acclimatization.