93 resultados para Platelet Activation
Resumo:
T cell recognition of antigens displayed on the surface of antigen presenting cell results in rapid activation of protein tyrosine kinases and kinase C. This process leads to second messengers, such as inositol phosphates and diacylgycerol, and phosphorylation of multiple proteins. The role of different protein kinases in the activation of peripheral blood mononuclear cells (PBMC) from Schistosoma mansoni infected individuals was evaluated using genistein and H-7, specific inhibitors of protein tyrosine kinase and kinase C, respectively. Our results showed that proliferation in response to soluble egg antigen or adult worm antigen preparation of S. mansoni was reduced when PBMC were cultured in presence of protein kinase inhibitors. Using these inhibitors on in vitro granuloma reaction, we also observed a marked reduction of granuloma index. Taken together, our results suggest that S. mansoni antigen activation of PBMC involves protein kinases activity
Resumo:
Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.
Resumo:
We have undertaken a comparative immunephenotypic study of spleen cells from hepatosplenic patients (HS) and uninfected individuals (NOR) using flow cytometry. Our data did not show any significant differences in the mean percentage of T-cells and B-cells between the two groups. Analysis of activated T-cells demonstrated that HS present an increased percentage of CD3+HLA-DR+ splenocytes in comparison to NOR. Analysis of T-cell subsets demonstrated a significant increase on the percentage of both activated CD4+ T-splenocytes and CD8+ cells in HS. We did not find any difference in the mean percentage of CD28+ T-cells. Analysis of the B-cell compartment did not show any difference on the percentage of B1-splenocytes. However, the spleen seems to be an important reservoir/source for B1 lymphocytes during hepatosplenic disease, since after splenectomy we found a decreased the percentage of circulating B1-lymphocytes. We observed an increase on the percentage of CD2+CD3- lymphocytes in the spleen of HS suggesting that the loss of CD3 by activated T-cells or the expansion of NK-cells might play a role in the development/maintenance of splenomegaly.
Resumo:
This paper reports the overall effects of three lectins, extracted from Canavalia brasiliensis, Dioclea violacea, and D. grandiflora, on BALB/c mice popliteal draining lymph nodes. These lectins have presented high stimulatory capacity on lymph node T cells. Additionally, they were able to induce apoptosis and inflammation (frequently associated with high endothelial venule necrosis). The data presented here suggest that the Diocleinae lectins studied can stimulate in vivo T cell activation and apoptosis, as well as present important side effects.
Resumo:
The phenotypic features acquired subsequent to antigen-specific stimulation in vitro were evaluated by means of the kinetic expressions of CD69 and CD25 activation molecules on T lymphocytes and assayed by flow cytometry in response to PPD, Ag85B, and ferritin in PPD-positive healthy control individuals. In response to PHA, CD69 staining on both CD4+ and CD8+ T cells became initially marked after 4 h, peaked at 24 h, and quickly decreased after 120 h. For CD25, a latter expression was detected around 8 h, having increased after 96 h. As expected, the response rate to the mycobacterial antigens was much lower than that to the mitogen. Positive staining was high after 96 h for CD25 and after 24 h for CD69. CD69 expression was significantly enhanced (p < 0.05) on CD8+ as compared to CD4+ T cells. High levels were also found between 96-120 h. Regarding Ag85B, CD25+ cells were mostly CD4+ instead of CD8+ T cells. Moreover, in response to ferritin, a lower CD25 expression was noted. The present data will allow further characterization of the immune response to new mycobacterial-specific antigens and their evaluation for possible inclusion in developing new diagnostic techniques for tuberculosis as well in a new vaccine to prevent the disease.
Resumo:
Recent work has demonstrated that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron-transport chain triggers several pathways of injury [(protein kinase C (PKC), hexosamine and polyol pathway fluxes, advanced glycation end product formation (AGE)] involved in the pathogenesis of diabetic complications by inhibiting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Increased oxidative and nitrosative stress activates the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP). PARP activation, on one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. On the other hand, PARP activation results in inhibition of GAPDH by poly-ADP-ribosylation. These processes result in acute endothelial dysfunction in diabetic blood vessels, which importantly contributes to the development of various diabetic complications. Accordingly, hyperglycemia-induced activation of PKC and AGE formation are prevented by inhibition of PARP activity. Furthermore, inhibition of PARP protects against diabetic cardiovascular dysfunction in rodent models of cardiomyopathy, nephropathy, neuropathy, and retinopathy. PARP activation is also present in microvasculature of human diabetic subjects. The present review focuses on the role of PARP in diabetic complications and emphasizes the therapeutic potential of PARP inhibition in the prevention or reversal of diabetic complications.
Resumo:
Platelet-activating factor (PAF) is one of the most potent lipid mediators involved in inflammatory events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity. Deacetylation induces the formation of the inactive metabolite lyso-PAF. This deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH), a calcium independent phospholipase A2 that also degrades a family of PAF-like oxidized phospholipids with short sn-2 residues. Biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Many observations indicate that plasma PAF AH terminates signals by PAF and oxidized PAF-like lipids and thereby regulates inflammatory responses. In this review, we will focus on the potential of PAF-AH as a modulator of diseases of dysregulated inflammation.
Resumo:
Malaria remains an important health problem in tropical countries like Brazil. Thrombocytopenia is the most common hematological disturbance seen in malarial infection. Oxidative stress (OS) has been implicated as a possible mediator of thrombocytopenia in patients with malaria. This study aimed to investigate the role of OS in the thrombocytopenia of Plasmodium vivax malaria through the measurement of oxidant and antioxidant biochemical markers in plasma and in isolated platelets. Eighty-six patients with P. vivax malaria were enrolled. Blood samples were analyzed for total antioxidant and oxidant status, albumin, total protein, uric acid, zinc, magnesium, bilirubin, total thiols, glutathione peroxidase (GPx), malondialdehyde (MDA), antibodies against mildly oxidized low-density lipoproteins (LDL-/nLDL ratio) and nitrite/nitrate levels in blood plasma and GPx and MDA in isolated platelets. Plasma MDA levels were higher in thrombocytopenic (TCP) (median 3.47; range 1.55-12.90 µmol/L) compared with the non-thrombocytopenic (NTCP) patients (median 2.57; range 1.95-8.60 µmol/L). Moreover, the LDL-/nLDL autoantibody ratio was lower in TCP (median 3.0; range 1.5-14.8) than in NTCP patients (median 4.0; range 1.9-35.5). Finally, GPx and MDA were higher in the platelets of TPC patients. These results suggest that oxidative damage of platelets might be important in the pathogenesis of thrombocytopenia found in P. vivax malaria as indicated by alterations of GPx and MDA.
Resumo:
Flaviviruses cause severe acute febrile and haemorrhagic infections, including dengue and yellow fever and the pathogenesis of these infections is caused by an exacerbated immune response. Dendritic cells (DCs) are targets for dengue virus (DENV) and yellow fever virus (YF) replication and are the first cell population to interact with these viruses during a natural infection, which leads to an induction of protective immunity in humans. We studied the infectivity of DENV2 (strain 16681), a YF vaccine (YF17DD) and a chimeric YF17D/DENV2 vaccine in monocyte-derived DCs in vitro with regard to cell maturation, activation and cytokine production. Higher viral antigen positive cell frequencies were observed for DENV2 when compared with both vaccine viruses. Flavivirus-infected cultures exhibited dendritic cell activation and maturation molecules. CD38 expression on DCs was enhanced for both DENV2 and YF17DD, whereas OX40L expression was decreased as compared to mock-stimulated cells, suggesting that a T helper 1 profile is favoured. Tumor necrosis factor (TNF)-α production in cell cultures was significantly higher in DENV2-infected cultures than in cultures infected with YF17DD or YF17D/DENV. In contrast, the vaccines induced higher IFN-α levels than DENV2. The differential cytokine production indicates that DENV2 results in TNF induction, which discriminates it from vaccine viruses that preferentially stimulate interferon expression. These differential response profiles may influence the pathogenic infection outcome.
Resumo:
Chagas disease (CD) causes the highest burden of parasitic diseases in the Western Hemisphere and is therefore a priority for drug research and development. Platelet-activating factor (PAF) causes the CD parasite Trypanosoma cruzi to differentiate, which suggests that the parasite may express PAF receptors. Here, we explored the T. cruzi proteome for PAF receptor-like proteins. From a total of 23,000 protein sequences, we identified 29 hypothetical proteins that are predicted to have seven transmembrane domains (TMDs), which is the main characteristic of the G protein-coupled receptors (GPCRs), including the PAF receptor. The TMDs of these sequences were independently aligned with domains from 25 animal PAF receptors and the sequences were analysed for conserved residues. The conservation score mean values for the TMDs of the hypothetical proteins ranged from 31.7-44.1%, which suggests that if the putative T. cruzi PAF receptor is among the sequences identified, the TMDs are not highly conserved. These results suggest that T. cruzi contains several GPCR-like proteins and that one of these GPCRs may be a PAF receptor. Future studies may further validate the PAF receptor as a target for CD chemotherapy.
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-α, whereas S. flexneri induced only the production of TNF-α. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4+ T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL)20 and TNF-α. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.
Resumo:
Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites), activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.
Resumo:
This work investigated the effect of microwave irradiation (MW) on the ethanolysis rate of soybean and sunflower oils catalyzed by supported Novozyme 435 (Candida antarctica). The effects of tert-butanol, water addition and oil:ethanol molar ratio on transesterification were evaluated under conventional heating (CH), and under optimum reaction conditions (with no added water in the system, 10% tert-butanol and 3:1 ethanol-to-oil molar ratio). The reactions were monitored up to 24 h to determine the conditions of initial reaction velocity. The investigated variables under MW (50 W) were: reaction time (5.0-180 min) and mode of reactor operation (fixed power, dynamic and cycles) in the absence and presence of tert-butanol (10% (w/w). The measured response was the reaction conversion in ethyl esters, which was linked to the enzyme catalytic activity. The results indicated that the use of microwave improved the activity at fixed power mode. A positive effect of the association of tert-butanol and MW irradiation on the catalytic activity was observed. The reaction rate improved in the order of approximately 1.5 fold compared to that under CH with soybean oil. Using soybean oil, the enzymatic transesterification under MW for conversion to FAEE (fatty acid ethyl esters) reached >99% in 3h, while with the use of CH the conversions were about 57% under similar conditions.