42 resultados para Parallel or distributed processing
Resumo:
Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.
Resumo:
Myocardial ischemia, as well as the induction agents used in anesthesia, may cause corrected QT interval (QTc) prolongation. The objective of this randomized, double-blind trial was to determine the effects of high- vs conventional-dose bolus rocuronium on QTc duration and the incidence of dysrhythmias following anesthesia induction and intubation. Fifty patients about to undergo coronary artery surgery were randomly allocated to receive conventional-dose (0.6 mg/kg, group C, n=25) or high-dose (1.2 mg/kg, group H, n=25) rocuronium after induction with etomidate and fentanyl. QTc, heart rate, and mean arterial pressure were recorded before induction (T0), after induction (T1), after rocuronium (just before laryngoscopy; T2), 2 min after intubation (T3), and 5 min after intubation (T4). The occurrence of dysrhythmias was recorded. In both groups, QTc was significantly longer at T3 than at baseline [475 vs 429 ms in group C (P=0.001), and 459 vs 434 ms in group H (P=0.005)]. The incidence of dysrhythmias in group C (28%) and in group H (24%) was similar. The QTc after high-dose rocuronium was not significantly longer than after conventional-dose rocuronium in patients about to undergo coronary artery surgery who were induced with etomidate and fentanyl. In both groups, compared with baseline, QTc was most prolonged at 2 min after intubation, suggesting that QTc prolongation may be due to the nociceptive stimulus of intubation.
Resumo:
This study proposes alternatives to the current methods of processing round-cooked lobster. The paralyzation of lobsters with direct electric shock consumes 10.526 x 10-3 kWh, which is significantly less than the 11 kWh required by the traditional thermal-shock method (based on 60 kg of lobsters). A better weight gain was obtained by immersion of paralyzed lobsters in brine before cooking. Systematic trials combining 3, 6, or 9% brine concentrations with immersion periods of 15, 30, or 45 minutes were performed in order to determine the best combinations. A mathematical model was designed to predict the weight gain of lobsters of different sizes in any combination of treatments. For small lobsters, a 45 minutes immersion in 6% brine gave the best response in terms of weight gain (4.7%) and cooking produced a weight loss of only 1.34% in relation to fresh lobster weight. For medium-sized lobsters, a 45 minutes immersion in 9% brine produced a weight gain of 2.64%, and cooking a weight gain of 1.08%. For large lobsters, a 45 minutes immersion in 6% brine produced a weight gain of 3.87%, and cooking a weight gain of 1.62%.
Resumo:
The microbiological quality of beef and meat products is strongly influenced by the conditions of hygiene prevailing during their production and handling. Without proper hygienic control, the environment in slaughterhouses and butcher shops can act as an important source of microbiological contamination. To identify the main points of microbiological contamination in the beef processing chain, 443 samples of equipment, installations and products were collected from 11 establishments (1 slaughterhouse and 10 butcher shops) located in the state of Paraná, Brazil. The microbiological quality of all the samples was evaluated using Petri dishes to obtain counts of mesophilic aerobes (AC), total coliforms, Escherichia coli (EC), yeasts and molds (YM). The main contamination points identified in butcher shops, in decreasing order, were stainless steel boxes, beef tenderizers, grinders, knives, mixers, sausage stuffers, plastic boxes, floors and drains. In the slaughterhouse, these points were sausage stuffers, platforms, floors and drains. The most severely contaminated products were fresh sausages and ground beef. This information about the main points of microbiological contamination in the beef processing chain is expected to aid professionals responsible for hygiene in similar establishments to set up proper hygienic procedures to prevent or reduce microbiological contamination of beef and meat products.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
Flaxseed has been widely studied around the world; its incorporation into products habitually consumed by human populations has been stimulated due to its unique nutritional value. The objective of this study was to evaluate the chemical composition of Brazilian flaxseed, to analyze the stability of lipids present in whole flaxseed flour (WFF) or partially defatted flaxseed flour (DFF) stored under several temperatures, and to investigate the effect of bread making on a product containing flaxseed. Whole flaxseed flour presented (g.100 g-1) 25.7 of insoluble fiber, 10.7 of soluble fiber, 38.9 of lipids, and 2.65 of lignan. Defatted flaxseed flour presented 65% less lipids, 36% more fiber and 56% more lignan than whole flaxseed flour. The fatty acid profile was maintained in the defatted flaxseed flour, and it presented a stable composition during storage under ambient temperature, refrigeration, and freezing. The fatty acid profile was similar in the bread containing defatted flaxseed flour after dough development, baking, and storage at room temperature or refrigerated. After baking, 89% of the lignan content was kept in bread. Results show that Brazilian flaxseed has an interesting chemical composition, and that defatted flaxseed, by-product of lipid extraction, presents a good stability to grind and storage under several temperatures. Thus, defatted flaxseed flour can be incorporated in bread, increasing its nutritional and functional value.
Resumo:
The objective of this work was to develop an extruded breakfast product containing broken rice and split old beans and to verify the influence of the extrusion process on their physicochemical, technological, and sensory characteristic. The final product had a protein content of 9.9 g.100 g-1, and therefore it can be considered a good source of proteins for children and teenagers. The dietary fiber content of the final edible product was 3.71 g.100 g-1. Therefore, the breakfast meal may be considered as a source of dietary fiber according to Brazilian law . As for the technological properties, the extruded product presented an expansion index of 8.89 and apparent density of 0.25 g.cm-3. With regard to the sensory analysis, the acceptance average was ranked between 6.8 and 7.7, corresponding to the categories "liked slightly" and "liked very much". With regard to purchase intention, 79% of the panelists said they would certainly or possibly purchase the product. Broken rice and split old beans are interesting alternatives for the elaboration of extruded breakfast products presenting good nutritional, technological, and sensory qualities.
Resumo:
Brazil is one of the three largest producers of fruits in the world, and among those fruit trees, the cashew tree stands out due to the high nutritional and commercial value of its products. During its fruit processing, there are losses in some compounds and few studies address this issue. Over the last decade the conventional system of food production has been substituted for the organic cultivation system, which is a promising alternative source of income given the global demand for healthy food. Therefore, this research aimed to characterize and quantify the prevalent fatty acids found in cashew nuts obtained from conventional and organic cultivation during various stages of processing. The prevalent fatty acids found were palmitic, linoleic, oleic, and stearic acid. The average of these fatty acids were 6.93 ± 0.55; 16.99 ± 0.61; 67.62 ± 1.00 and 8.42 ± 0.55 g/100 g, respectively. There was no reduction in the palmitic, oleic and stearic fatty acid contents during processing. Very little difference was observed between the nuts obtained from conventional and organic cultivation, indicating that the method of cultivation used has little or no influence on the content of cashew nut fatty acids.
Resumo:
Yellowfin tuna has a high level of free histidine in their muscle, which can lead to histamine formation by microorganisms if temperature abuse occurs during handling and further processing. The objective of this study was to measure levels of histamine in damaged and undamaged thawed muscle to determine the effect of physical damage on the microbial count and histamine formation during the initial steps of canning processing and to isolate and identify the main histamine-forming microorganisms present in the flesh of yellowfin tuna. Total mesophilic and psicrophilic microorganisms were determined using the standard plate method. The presence of histamine-forming microorganisms was determined in a modified Niven's agar. Strains were further identified using the API 20E kit for enterobacteriaceae and Gram-negative bacilli. Physically damaged tuna did not show higher microbiological contamination than that of undamaged muscle tuna. The most active histamine-forming microorganism present in tuna flesh was Morganella morganii. Other decarboxylating microorganisms present were Enterobacter agglomerans and Enterobacter cloacae. Physical damage of tune during catching and handling did not increase the level of histamine or the amount of microorganisms present in tuna meat during frozen transportation, but they showed a higher risk of histamine-forming microorganism growth during processing.
Resumo:
AbstractThermal processing and production practices used in vegetables can cause changes in their phytochemical contents. Eggplant is characterized by its high antioxidant content. The objective of this work was to determine levels of anthocyanins, polyphenols, and flavonoids and antioxidant capacity in organically and conventionally grown eggplant prepared fresh or subjected to one of three thermal preparation methods: boiling, baking or steaming. The soluble and hydrolyzable polyphenols and flavonoids content were quantified by Folin-Ciocalteu and Aluminum chloride methods, respectively. Anthocyanins were quantified according to the pH differential method. Antioxidant capacity was determined by DPPH and ORAC methods. The results showed differences between organic and conventional eggplant for some variables although cultivation method did not have a consistent effect. Hydrolysable polyphenol content was greater, and soluble and hydrolysable antioxidant capacities were higher in organically grown eggplant, while anthocyanin content was greater in conventionally grown eggplant. Fresh eggplant produced under conventional cultivation had a much greater content of anthocyanins compared to that of other cultivation method-thermal treatment combination. In general, steamed eggplant contained higher total polyphenol and flavonoid levels as well as greater antioxidant capacity. Steamed eggplant from both conventional and organic systems also had high amounts of anthocyanins compared to other thermal treatments.