52 resultados para PERFUSED-RAT-LIVER
Resumo:
The responsiveness of glycogen breakdown to cAMP was investigated in isolated perfused liver from male Wistar fed rats (200-220 g) with insulin-induced hypoglycemia. The activation of glycogenolysis by 3 µM cAMP was decreased (P<0.05) in livers from rats with hypoglycemia induced by the administration of insulin or during the direct infusion of insulin into the isolated liver. The direct effect of insulin on glycogen catabolism promoted by 3 µM cAMP occurred as early as 3 min after starting insulin infusion. In contrast, the cAMP agonists resistant to phosphodiesterases, 8Br-cAMP and 6MB-cAMP, used at the same concentration as cAMP, i.e., 3 µM, did not modify the effect of insulin. The data suggest that the decreased hepatic responsiveness of glycogen breakdown during insulin-induced hypoglycemia is a direct effect of insulin decreasing the intracellular levels of cAMP.
Resumo:
Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-α1 (-53%), TIMP-1 (-31.7%), TGF-β1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.
Resumo:
To study the effect of halothane as a cardioplegic agent, ten Wistar rats were anesthetized by ether inhalation and their hearts were perfused in a Langendorff system with Krebs-Henseleit solution (36oC; 90 cm H2O pressure). After a 15-min period for stabilization the control values for heart rate, force (T), dT/dt and coronary flow were recorded and a halothane-enriched solution (same temperature and pressure) was perfused until cardiac arrest was obtained. The same Krebs-Henseleit solution was reperfused again and the parameters studied were recorded after 1, 3, 5, 10, 20 and 30 min. Cardiac arrest occurred in all hearts during the first two min of perfusion with halothane-bubbled solution. One minute after reperfusion without halothane, the following parameters reported in terms of control values were obtained: 90.5% of control heart rate (266.9 ± 43.4 to 231.5 ± 71.0 bpm), 20.2% of the force (1.83 ± 0.28 to 0.37 ± 0.25 g), 19.8% of dT/dt (46.0 ± 7.0 to 9.3 ± 6.0 g/s) and 90.8% of coronary flow (9.9 ± 1.5 to 9.4 ± 1.5 ml/min). After 3 min of perfusion they changed to 99.0% heart rate (261.0 ± 48.2), 98.9% force (1.81 ± 0.33), 98.6 dT/dt (45.0 ± 8.2) and 94.8% coronary flow (9.3 ± 1.4). At 5 min 100.8% (267.0 ± 40.6) heart rate, 105.0% (1.92 ± 0.29) force and 104.4% (48.2 ± 7.2) dT/dt were recorded and maintained without significant differences (P>0.01) until the end of the experiment. These data demonstrate that volatile cardioplegia with halothane is an effective technique for fast induction of and prompt recovery from normothermic cardiac arrest of the rat heart
Resumo:
There is increasing evidence that angiotensin-(1-7) (Ang-(1-7)) is an endogenous biologically active component of the renin-angiotensin system (RAS). In the present study, we investigated the effects of Ang-(1-7) on reperfusion arrhythmias in isolated rat hearts. Isolated rat hearts were perfused with two different media, i.e., Krebs-Ringer (2.52 mM CaCl2) and low-Ca2+ Krebs-Ringer (1.12 mM CaCl2). In hearts perfused with Krebs-Ringer, Ang-(1-7) produced a concentration-dependent (27-210 nM) reduction in coronary flow (25% reduction at highest concentration), while only slight and variable changes in contraction force and heart rate were observed. Under the same conditions, angiotensin II (Ang II; 27 and 70 nM) produced a significant reduction in coronary flow (39% and 48%, respectively) associated with a significant increase in force. A decrease in heart rate was also observed. In low-Ca2+ Krebs-Ringer solution, perfusion with Ang-(1-7) or Ang II at 27 nM concentration produced similar changes in coronary flow, contraction force and heart rate. In isolated hearts perfused with normal Krebs-Ringer, Ang-(1-7) produced a significant enhancement of reperfusion arrhythmias revealed by an increase in the incidence and duration of ventricular tachycardia and ventricular fibrillation (more than 30-min duration). The facilitation of reperfusion arrhythmias by Ang-(1-7) was associated with an increase in the magnitude of the decreased force usually observed during the post-ischemic period. The effects of Ang-(1-7) were abolished in isolated rat hearts perfused with low-Ca2+ Krebs-Ringer. The effect of Ang II (27 nM) was similar but less pronounced than that of Ang-(1-7) at the same concentration. These results indicate that the heart is a site of action for Ang-(1-7) and suggest that this heptapeptide may be involved in the mediation of the cardiac effects of the RAS
Resumo:
We studied the alterations in the metabolism of liver mitochondria in rats with acute pancreatitis. Male Wistar rats were allocated to a control group (group I) and to five other groups corresponding to 2, 4, 12, 24 and 48 h after the induction of acute pancreatitis by the injection of 5% sodium taurocholate into the pancreatic duct. Sham-operated animals were submitted to the same surgical steps except for the induction of acute pancreatitis. Mitochondrial oxidation and phosphorylation were measured polarographically by determining oxygen consumption without ADP (basal respiration, state 4) and in the presence of ADP (activated respiration, state 3). Serum amylase, transaminases (ALT and AST) and protein were also determined. Ascitic fluid, contents of amylase, trypsin and total protein were also determined and arterial blood pressure was measured in all groups. In ascitic fluid, trypsin and amylase increased reaching a maximum at 2 and 4 h, respectively. Serum amylase increased at 2 h reaching a maximum at 4 h. Serum transaminase levels increased at 12 and 24 h. After 2 h (and also 4 h) there was an increase in state 4 respiration (45.65 ± 1.79 vs 28.96 ± 1.50) and a decrease in respiration control rate (3.53 ± 0.09 vs 4.45 ± 0.08) and in the ADP/O ratio (1.77 ± 0.02 vs 1.91 ± 0.01) compared to controls (P<0.05). These results indicate a disruption of mitochondrial function, which recovered after 12 h. In the 48-h groups there was mitochondrial damage similar to that occurring in ischemic lesion. Beat-to-beat analysis (30 min) showed that arterial blood pressure remained normal up to 24 h (111 ± 3 mmHg) while a significant decrease occurred in the 48-h group (91 ± 4 mmHg). These data suggest biphasic damage in mitochondrial function in acute pancreatitis: an initial uncoupled phase, possibly secondary to enzyme activity, followed by a temporary recovery and then a late and final dysfunction, associated with arterial hypotension, possibly related to ischemic damage.
Resumo:
ß-Myrcene (MYR) is a monoterpene found in the oils of a variety of aromatic plants including lemongrass, verbena, hop, bay, and others. MYR and essential oils containing this terpenoid compound are used in cosmetics, household products, and as flavoring food additives. This study was undertaken to investigate the effects of MYR on fertility and general reproductive performance in the rat. MYR (0, 100, 300 and 500 mg/kg) in peanut oil was given by gavage to male Wistar rats (15 per dose group) for 91 days prior to mating and during the mating period, as well as to females (45 per dose group) continuously for 21 days before mating, during mating and pregnancy, and throughout the period of lactation up to postnatal day 21. On day 21 of pregnancy one-third of the females of each group were submitted to cesarean section. Resorption, implantation, as well as dead and live fetuses were counted. All fetuses were examined for external malformations, weighed, and cleared and stained with Alizarin Red S for skeleton evaluation. The remaining dams were allowed to give birth to their offspring. The progeny was examined at birth and subsequently up to postnatal day 21. Mortality, weight gain and physical signs of postnatal development were evaluated. Except for an increase in liver and kidney weights, no other sign of toxicity was noted in male and female rats exposed to MYR. MYR did not affect the mating index (proportion of females impregnated by males) or the pregnancy index (ratio of pregnant to sperm-positive females). No sign of maternal toxicity and no increase in externally visible malformations were observed at any dose level. Only at the highest dose tested (500 mg/kg) did MYR induce an increase in the resorption rate and a higher frequency of fetal skeleton anomalies. No adverse effect of MYR on postnatal weight gain was noted but days of appearance of primary coat, incisor eruption and eye opening were slightly delayed in the exposed offspring. On the basis of the data presented in this paper the no-observed-adverse-effect level (NOAEL) for toxic effects on fertility and general reproductive performance can be set at 300 mg of ß-myrcene/kg body weight by the oral route.
Resumo:
The activities of aspirin (acetylsalicylic acid)-esterases were measured in several tissues (liver, kidney, adrenal glands, brain and serum) from adult male and female Wistar rats. In males, both aspirin-esterase I (assayed at pH 5.5) and II (assayed at pH 7.4) activities were higher in liver homogenates when compared to females (aspirin-esterase I: males 48.9 ± 4.8 (N = 8) and females 29.3 ± 4.2 (N = 8) nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 41.4 ± 4.1 (N = 8) and females 26.1 ± 4.5 (N = 8) nmol of salicylic acid formed min-1 mg protein-1, P<0.001). In serum, enzyme activity was higher in females than in males (aspirin-esterase I: males 0.85 ± 0.06 (N = 6) and females 1.18 ± 0.11 (N = 6) nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 1.03 ± 0.13 (N = 6) and females 1.34 ± 0.11 (N = 6) nmol of salicylic acid formed min-1 mg protein-1, P<0.001). In the other tissues assayed, no statistically significant difference between males and females was found. There were no statistically significant differences when the enzymes were assayed in different phases of the estrous cycle in liver and serum. These results show that the differences in aspirin-esterase activity observed between males and females are not due to the estrous cycle. The gender difference obtained in our study may indicate an involvement of gonadal hormones in the control of the hydrolysis of aspirin. This possibility is currently under investigation.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.
Resumo:
It has been shown that angiotensin-(1-7) (Ang-(1-7)) infusion potentiates the bradykinin (BK)-induced hypotensive response in conscious rats. The present study was conducted to identify Ang-(1-7)-BK interactions in the isolated rat heart perfused according to the Langendorff technique. Hearts were excised and perfused through the aortic stump under a constant flow with Krebs-Ringer solution and the changes in perfusion pressure and heart contractile force were recorded. Bolus injections of BK (2.5, 5, 10 and 20 ng) produced a dose-dependent hypotensive effect. Ang-(1-7) added to the perfusion solution (2 ng/ml) did not change the perfusion pressure or the contractile force but doubled the hypotensive effect of the lower doses of BK. The BK-potentiating Ang-(1-7) activity was blocked by pretreatment with indomethacin (5 mg/kg, ip) or L-NAME (30 mg/kg, ip). The Ang-(1-7) antagonist A-779 (50 ng/ml in Krebs-Ringer) completely blocked the effect of Ang-(1-7) on BK-induced vasodilation. These data suggest that the potentiation of the BK-induced vasodilation by Ang-(1-7) can be attributed to the release of nitric oxide and vasodilator prostaglandins through an Ang-(1-7) receptor-mediated mechanism.
Resumo:
Many studies have reported the occurrence of lethal acute renal failure after snakebites. The aim of the present investigation was to determine alterations in renal function produced by Crotalus durissus terrificus venom and crotoxin as well as the histological alterations induced by these venoms. Isolated kidneys from Wistar rats weighing 240 to 280 g were perfused with Krebs-Henseleit solution containing 6 g% of previously dialyzed bovine serum albumin. The effects of Crotalus durissus terrificus venom and crotoxin were studied on glomerular filtration rate (GFR), urinary flow (UF), perfusion pressure (PP) and percentage sodium tubular transport (%TNa+). The infusion of Crotalus durissus terrificus venom (10 µg/ml) and crotoxin (10 µg/ml) increased GFR (control80 = 0.78 ± 0.07, venom80 = 1.1 ± 0.07, crotoxin80 = 2.0 ± 0.05 ml g-1 min-1, P<0.05) and UF (control80 = 0.20 ± 0.02, venom80 = 0.32 ± 0.03, crotoxin80 = 0.70 ± 0.05 ml g-1 min-1, P<0.05), and decreased %TNa+ (control100 = 75.0 ± 2.3, venom100 = 62.9 ± 1.0, crotoxin80 = 69.0 ± 1.0 ml g-1 min-1, P<0.05). The infusion of crude venom tended to reduce PP, although the effect was not significant, whereas with crotoxin PP remained stable during the 100 min of perfusion. The kidneys perfused with crude venom and crotoxin showed abundant protein material in the urinary space and tubules. We conclude that Crotalus durissus terrificus venom and crotoxin, its major component, cause acute nephrotoxicity in the isolated rat kidney. The current experiments demonstrate a direct effect of venom and crotoxin on the perfused isolated kidney.
Resumo:
The present study was designed to determine relaxation in response to 17ß-estradiol by isolated perfused hearts from intact normotensive male and female rats as well as the contribution of endothelium and its relaxing factors to this action. Baseline coronary perfusion pressure was determined and the vasoactive effects of 17ß-estradiol (10 µM) were assessed by in bolus administration before and after endothelium denudation by infusion of 0.25 µM sodium deoxycholate or perfusion with 100 µM L-NAME, 2.8 µM indomethacin, 0.75 µM clotrimazole, 100 µM L-NAME plus 2.8 µM indomethacin, and 100 µM L-NAME plus 0.75 µM clotrimazole. Baseline coronary perfusion pressure differed significantly between males (84 ± 2 mmHg, N = 61) and females (102 ± 2 mmHg, N = 61). Bolus injection of 10 µM 17ß-estradiol elicited a transient relaxing response in all groups, which was greater in coronary beds from females. For both sexes, the relaxing response to 17ß-estradiol was at least in part endothelium-dependent. In the presence of the nitric oxide synthase inhibitor L-NAME, the relaxing response to 17ß-estradiol was reduced only in females. Nevertheless, in the presence of indomethacin, a cyclooxygenase inhibitor, or clotrimazole, a cytochrome P450 inhibitor, the 17ß-estradiol response was significantly reduced in both groups. In addition, combined treatment with L-NAME plus indomethacin or L-NAME plus clotrimazole also reduced the 17ß-estradiol response in both groups. These results indicate the importance of prostacyclin and endothelium-derived hyperpolarizing factor in the relaxing response to 17ß-estradiol. 17ß-estradiol-induced relaxation may play an important role in the regulation of coronary tone and this may be one of the reasons why estrogen replacement therapy reduces the risk of coronary heart disease in postmenopausal women.
Resumo:
The effects of an aqueous extract of the plant Scoparia dulcis (200 mg/kg) on the polyol pathway and lipid peroxidation were examined in the liver of streptozotocin adult diabetic male albino Wistar rats. The diabetic control rats (N = 6) presented a significant increase in blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin and lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS) and hydroperoxides, and a significant decrease in plasma insulin and antioxidant enzymes such as glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) compared to normal rats (N = 6). Scoparia dulcis plant extract (SPEt, 200 mg kg-1 day-1) and glibenclamide (600 µg kg-1 day-1), a reference drug, were administered by gavage for 6 weeks to diabetic rats (N = 6 for each group) and significantly reduced blood glucose, sorbitol dehydrogenase, glycosylated hemoglobin, TBARS, and hydroperoxides, and significantly increased plasma insulin, GPx, GST and GSH activities in liver. The effect of the SPEt was compared with that of glibenclamide. The effect of the extract may have been due to the decreased influx of glucose into the polyol pathway leading to increased activities of antioxidant enzymes and plasma insulin and decreased activity of sorbitol dehydrogenase. These results indicate that the SPEt was effective in attenuating hyperglycemia in rats and their susceptibility to oxygen free radicals.
Resumo:
Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group) consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v) ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase) from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption) was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.
Resumo:
The investigation of resistance vessels is generally costly and difficult to execute. The present study investigated the diameters and the vascular reactivity of different segments of the rat tail artery (base, middle, and tail end) of 30 male Wister rats (EPM strain) to characterize a conductance or resistance vessel, using a low-cost simple technique. The diameters (mean ± SEM) of the base and middle segments were 471 ± 4.97 and 540 ± 8.39 µm, respectively, the tail end was 253 ± 2.58 µm. To test reactivity, the whole tail arteries or segments were perfused under constant flow and the reactivity to phenylephrine (PHE; 0.01-300 µg) was evaluated before and after removal of the endothelium or drug administration. The maximal response (Emax) and sensitivity (pED50) to PHE of the whole tail and the base segment increased after endothelium removal or treatment with 100 µM L-NAME, which suggests modulation by nitric oxide. Indomethacin (10 µM) and tetraethylammonium (5 mM) did not change the Emax or pED50 of these segments. PHE and L-NAME increased the pED50 of the middle and the tail end only and indomethacin did not change pED50 or Emax. Tetraethylammonium increased the sensitivity only at the tail end, which suggests a blockade of vasodilator release. Results indicate that the proximal segment of the tail artery possesses a diameter compatible with a conductance vessel, while the tail end has the diameter of a resistance vessel. In addition, the vascular reactivity to PHE in the proximal segment is nitric oxide-dependent, while the tail end is dependent on endothelium-derived hyperpolarizing factor.