96 resultados para PEG-PCL copolymer
Resumo:
Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol) and poly(propylene glycol) (PEG-b-PPG), with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA), isophorone diisocyanate (IPDI), and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH) and PPG and (PEG-b-PPG). The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.
Resumo:
For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS) and water (S1) and with diisopropyl adipate, PFS and water (S4) presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 ºC), the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.
Resumo:
In this study, polymeric nanocapsules of PCL containing the herbicide atrazine were prepared. In order to optimize the preparation conditions, a 2³ factorial design was performed using different formulations of nanocapsules, which investigated the influence of three variables at two levels. The factors varied were the quantities of PCL, Span 60 and Myritol. The results were evaluated considering the size, polydispersity, zeta potential and association rate and the measures of these parameters were taken immediately after preparation and after 30 days of preparation. The formulations with minimum level of polymer in the preparation showed better stability results.
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.
Resumo:
Ursolic acid is a natural molecule that presents several pharmacological properties. In this work, an analytical method by RP-HPLC has been developed and validated for quantification of this drug in the solid dispersions, using PEG 6000 and Poloxamer 407 as polymers. The method was specific, linear in the range of 1.0-50.0 µg mL-1 (r<0.99), precise (CV < 5% for both inter- and intra-assays), accurate (maximum deviation of ± 13%), and robust to the parameters evaluated. This method has proved to be simple and useful for ursolic acid determination in solid dispersions, enabling its determination in pharmaceutical dosage form.
Resumo:
Titanium dioxide porous thin films on the Anatase phase were deposited onto glass slides by the sol-gel method assisted with polyethylene glycol (PEG). The dip-coated films were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA and DTG), UV-visible spectroscopy and X-ray diffraction (XRD). The photocatalytic activity of the films was determined by means of methyl-orange oxidation tests. The resultant PEG-modified films were crack-free and developed a porous structure after calcination at 500 °C. Photo-oxidation tests showed the dependency of catalytic activity of the films on the number of layers (thickness) and porosity, i.e. of the interfacial area.
Resumo:
A multiresidue method using HPLC/DAD for the determination of fourteen pesticides in water based on SPE, using SDVB (styrene divynilbenzene copolymer) as adsorbent was validated. Recoveries from 61 to 120%, relative standard deviation between 2 and 15% and detection limits from 0.07 to 0.75 µg L-1 were obtained. It was applied to 66 surface water samples collected in a degraded area at the headwaters of São Lourenço river, Mato Grosso, Brazil. Eight pesticides were detected in concentrations ranging from 0.15 to 35.25 µg L-1. Considering ecotoxicological data, carbendazim and carbofuran may represent a risk to aquatic organisms. These results draw attention to the contamination of this vulnerable degraded area.
Resumo:
We investigated the effect of adding titanium dioxide nanoparticles (TiO2) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO2 containing 0.25%-1% TiO2, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO2 to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization.
Resumo:
The mixture of synthetic and natural materials yields a material with improved physical-chemical properties. One way of obtaining this kind of material is through graft copolymerization. Some natural materials have been used in graft copolymerization with synthetic monomers. In this work, graft copolymerization of butyl acrylate (BA) onto starch using a redox initiator system was carried out. The graft yield was evaluated for different reaction conditions. The graft copolymer was characterized by infrared spectroscopy, thermal analysis and scanning electron microscopy (SEM).
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
The objective of this work was the immobilization of the enzyme Candida antarctica lipase B (CAL B) using the sol-gel method of immobilization and three different initiators of the polymerization reaction: one acid (HCl), one basic (NH4OH) and the other nucleophilic (HBr). Tetraethylorthosilicate was used as the silica precursor. The influence of the additive PEG 1500 on immobilization was assessed. The efficiency of the process was evaluated considering the esterification activity of the xerogels. The immobilization process provided enhanced thermal stability, storage and operational aspects relative to the free enzyme. Storage temperature proved one of the main variables to be considered in the process, with the xerogels stored under refrigeration showing better results in terms of residual activity (nearly 200 days with ≥ 90% residual activity of basic and nucleophilic xerogels) when compared with storage at ambient temperature (nearly 40 days). The results demonstrated the possibility of reuse of derivatives and a greater number of cycles (nine), considering a residual activity of 50%.
Resumo:
We report the single-step derivatization reaction of a biopolymer based onL -lysine with D -biotin analogs:Co -poly(L -lysine)-graft-(ε-N -[X-D-biotinyl]-L -lysine) (PLL-X-Biotin). The valeric acid carboxylate of D -biotin is activated to an NHS ester for direct modification of amine groups in proteins and other macromolecules. NHS esters react by nucleophilic attack of an amine in the carbonyl group, releasing the NHS group, and forming a stable amide linkage. NHS-X-Biotin is the simplest biotinylation reagent commercially available. In contrast withD -biotin, it has a longer spacer arm off the valeric acid side chain allowing better binding potential for avidin or streptavidin probes. Derivatization of poly(L -lysine) (PLL) with NHS-X-Biotin led to a copolymer PLL-X-Biotin. UV-Visible, IR-FT and 1H NMR characteristics derived from synthesis are briefly discussed.
Resumo:
Amostras foliares de Crotalaria paulinea apresentando mosaico foram coletadas em São Luiz, MA, e enviadas ao Laboratório de Virologia Vegetal da UFC. As amostras foram testadas por Elisa indireto, contra anti-soros para Cowpea aphid-borne mosaic virus (CABMV) e Cucumber mosaic virus (CMV) e por dupla difusão em àgar contra anti-soro para Cowpea severe mosaic virus (CPSMV). As amostras reagiram somente com o anti-soro para CPSMV, indicando ser C. paulinea mais um hospedeiro natural do vírus. Extratos das folhas de C. paulinea foram inoculados em plantas de caupi (Vigna unguiculata subsp. unguiculata) mantidas em casa de vegetação. Dez dias após a inoculação, as plantas passaram a exibir sintomas de mosaico e a presença do CPSMV foi confirmada por sorologia. Nos estudos de gama de hospedeiros, envolvendo oito espécies botânicas, o isolado de CPSMV obtido de C. paulinea (CPSMV-Cp) infetou sistemicamente somente cultivares de caupi. Estudos de reações de RT-PCR revelaram a presença de uma banda no gel de agarose de 594 pb para o CPSNV-Cp semelhante às de outros isolados de CPSMV. O CPSMV-Cp foi multiplicado em caupi cv. Pitiúba e purificado por clarificação com n-butanol, precipitação viral com PEG e ultracentrifugação. A preparação purificada apresentou um espectro de absorção ultravioleta típico de núcleoproteína com uma razão A260/A280 de 1,7. Coelho da raça Nova Zelândia Branca imunizado com a preparação viral purificada, produziu anti-soro policlonal reativo com CPSMV em dupla difusão em àgar. Este é o primeiro relato sobre a infecção natural de CPSMV em C. paulinea.
Resumo:
A termoterapia é uma medida de controle tradicionalmente utilizada com sucesso para eliminação de patógenos em sementes de espécies hospedeiras. Trata-se, no entanto, de uma medida que provoca alterações fisiológicas e bioquímicas nas sementes em diferentes intensidades, podendo comprometer o desempenho das mesmas nas condições de cultivo. Objetivou-se com este trabalho avaliar a eficácia da termoterapia no controle de alguns fungos associados a sementes de milho e do condicionamento osmótico, após o tratamento térmico, no sentido de reparar danos nas sementes provocados nestas circunstâncias. Os fungos associados às sementes foram avaliados por meio do método de incubação em substrato de papel com congelamento, e a qualidade fisiológica das sementes pelos testes de germinação, primeira contagem, condutividade elétrica, e padrões eletroforéticos das enzimas esterase (EST), malato desidrogenase (MDH) e álcool desidrogenase (ADH). O tratamento térmico utilizado foi por imersão em água aquecida a 60°C por 5, 10 e 20 minutos. Após o tratamento, uma fração das sementes foi submetida ao condicionamento fisiológico em rolo de papel embebido em solução de PEG 6000 a -1,2 MPa. Todos os tratamentos térmicos reduziram ou eliminaram Acremonium strictum das sementes. A incidência de Fusarium verticillioides foi reduzida significativamente pelo tratamento térmico nos períodos de 10 e 20 minutos. À medida que se aumentou o tempo de exposição ao tratamento térmico, houve aumento dos valores de condutividade elétrica e redução significativa da primeira contagem e germinação das sementes. O tratamento térmico durante 20 minutos alterou os padrões eletroforéticos das enzimas esterase e malato desidrogenase. O condicionamento fisiológico das sementes não foi capaz de reverter os danos causados pela termoterapia.