116 resultados para PCR analysis
Resumo:
The adhesins of extraintestinal pathogenic Escherichia coli are essential for mediating direct interactions between the microbes and the host cell surfaces that they infect. Using fluorescence microscopy and gentamycin protection assays, we observed that 49 sepsis-associated E. coli (SEPEC) strains isolated from human adults adhered to and invaded Vero cells in the presence of D-mannose (100%). In addition, bacteria concentrations of approximately 2 x 10(7) CFU/mL were recovered from Vero cells following an invasion assay. Furthermore, PCR analysis of adhesin genes showed that 98.0% of these SEPEC strains tested positive for fimH, 69.4% for flu, 53.1% for csgA, 38.8% for mat, and 32.7% for iha. Analysis of the invasin genes showed that 16.3% of the SEPEC strains were positive for tia, 12.3% for gimB, and 10.2% for ibeA. Therefore, these data suggest that SEPEC adhesion to cell surfaces occurs through non-fimH mechanisms. Scanning electron microscopy showed the formation of microcolonies on the Vero cell surface. SEPEC invasiveness was also confirmed by the presence of intracellular bacteria, and ultrastructural analysis using electron transmission microscopy revealed bacteria inside the Vero cells. Taken together, these results demonstrate that these SEPEC strains had the ability to adhere to and invade Vero cells. Moreover, these data support the theory that renal cells may be the predominant pathway through which SEPEC enters human blood vessels.
Resumo:
Data concerning HCV infection in Central Brazil are rare. Upon testing 2,350 voluntary blood donors from this region, we found anti-HCV prevalence rates of 2.2% by a second generation ELISA and 1.4% after confirmation by a line immunoassay. Antibodies against core, NS4, and NS5 antigens of HCV were detected in 81.8%, 72.7%, and 57.5%, respectively, of the positive samples in the line immunoassay. HCV viremia was present in 76.6% of the anti-HCV-positive blood donors. A relation was observed between PCR positivity and serum reactivity in recognizing different HCV antigens in the line immunoassay. The majority of the positive donors had history of previous parenteral exposure. While the combination of ALT>50 IU/l and anti-HBc positivity do not appear to be good surrogate markers for HCV infection, the use of both ALT anti-HCV tests is indicated in the screening of Brazilian blood donors.
Resumo:
More than 70 species of mycobacteria have been defined, and some can cause disease in humans, especially in immunocompromised patients. Species identification in most clinical laboratories is based on phenotypic characteristics and biochemical tests and final results are obtained only after two to four weeks. Quick identification methods, by reducing time for diagnosis, could expedite institution of specific treatment, increasing chances of success. PCR restriction-enzyme analysis (PRA) of the hsp65 gene was used as a rapid method for identification of 103 clinical isolates. Band patterns were interpreted by comparison with published tables and patterns available at an Internet site (http://www.hospvd.ch:8005). Concordant results of PRA and biochemical identification were obtained in 76 out of 83 isolates (91.5%). Results from 20 isolates could not be compared due to inconclusive PRA or biochemical identification. The results of this work showed that PRA could improve identification of mycobacteria in a routine setting because it is accurate, fast, and cheaper than conventional phenotypic identification.
Resumo:
Restriction fragment length polymorphism (RFLP) analysis of a PCR-amplified fragment of the 16S rRNA gene was performed on reference strains belonging to 21 different enterococcal species and on 75 Enterococcus isolates recovered from poultry meat, pasteurised milk and fresh cheese. PCR amplification generated a 275 bp fragment, which was digested with three restriction endonucleases (DdeI, HaeIII, HinfI). The strains were divided into five groups (groups A-E) on the basis of their restriction patterns. Five biochemical tests (arabinose, arginine, manitol, methyl-β-D-glucopyranoside and raffinose) were then performed in addition to RFLP analysis to narrow the identification of enterococcal strains to the species level. PCR-RFLP, in conjunction with the selected biochemical tests, allowed the precise identification of the 21 species of Enterococcus included in the present study. This proposed method is relatively simple and rapid and can be useful as an adjunct tool for accurate identification of Enterococcus.
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.
Resumo:
The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR), genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress), and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity). The raw cycle threshold (Ct) data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M), and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.
Resumo:
Twelve Brazilian isolates and one reference vaccine strain of avian infectious bronchitis virus (IBV) were propagated in embryonating chicken eggs. The entire S1 glycoprotein gene of these viruses was analysed by reverse-transcriptase-polymerase chain reaction and restriction fragment length polymorphism (RT-PCR-RFLP), using the restriction enzymes HaeIII, XcmI and BstyI. The RFLP patterns led to the classification of these isolates into five distinct genotypes: A, B, C, D and Massachusetts. Five of twelve isolates were grouped in Massachusetts genotype and the remaining seven viruses were classified into four distinct genotypes: A (2), B (2), C (2) or D (1). Such genotyping classification agreed with previous immunological analysis for most of these viruses, highlighting the occurrence of a relevant variability among the IBV strains that are circulating in Brazilian commercial poultry flocks.
Resumo:
To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w) were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB) increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005) increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.
Resumo:
OBJECTIVE: The clinical differential diagnosis of rash due to viral infections is often difficult, and misdiagnosis is not rare, especially after the introduction of measles and rubella vaccination. A study to determine the etiological diagnosis of exanthema was carried out in a group of children after measles vaccination. METHODS: Sera collected from children with rash who received measles vaccine were reported in 1999. They were analyzed for IgM antibodies against measles virus, rubella virus, human parvovirus B19 (HPV B19) using ELISA commercial techniques, and human herpes virus 6 (HHV 6) using immunofluorescence commercial technique. Viremia for each of those viruses was tested using a polimerase chain reaction (PCR). RESULTS: A total of 17 cases of children with exanthema after measles immunization were reported in 1999. The children, aged 9 to 12 months (median 10 months), had a blood sample taken for laboratory analysis. The time between vaccination and the first rash signs varied from 1 to 60 days. The serological results of those 17 children suspected of measles or rubella infection showed the following etiological diagnosis: 17.6% (3 in 17) HPV B19 infection; 76.5% (13 in 17) HHV 6 infection; 5.9% (1 in 17) rash due to measles vaccine. CONCLUSIONS: The study data indicate that infection due to HPV B19 or HHV 6 can be misdiagnosed as exanthema due to measles vaccination. Therefore, it is important to better characterize the etiology of rash in order to avoid attributing it incorrectly to measles vaccine.
Resumo:
The phlebotomine sand fly Lutzomyia longipalpis has been incriminated as a vector of American visceral leishmaniasis, caused by Leishmania chagasi. However, some evidence has been accumulated suggesting that it may exist in nature not as a single but as a species complex. Our goal was to compare four laboratory reference populations of L. longipalpis from distinct geographic regions at the molecular level by RAPD-PCR. We screened genomic DNA for polymorphic sites by PCR amplification with decamer single primers of arbitrary nucleotide sequences. One primer distinguished one population (Marajó Island, Pará State, Brazil) from the other three (Lapinha Cave, Minas Gerais State, Brazil; Melgar, Tolima Department, Colombia and Liberia, Guanacaste Province, Costa Rica). The population-specific and the conserved RAPD-PCR amplified fragments were cloned and shown to differ only in number of internal repeats.
Resumo:
We report an adaptation of a technique for the blood sample collection (GFM) as well as for the extraction and amplification of Plasmodium DNA for the diagnosis of malaria infection by the PCR/ELISA. The method of blood sample collection requires less expertise and saves both time and money, thus reducing the cost by more than half. The material is also suitable for genetic analysis in either fresh or stored specimens prepared by this method.
Resumo:
Susceptibility of snails to infection by certain trematodes and their suitability as hosts for continued development has been a bewildering problem in host-parasite relationships. The present work emphasizes our interest in snail genetics to determine what genes or gene products are specifically responsible for susceptibility of snails to infection. High molecular weight DNA was extracted from both susceptible and non-susceptible snails within the same species Biomphalaria tenagophila. RAPD was undertaken to distinguish between the two types of snails. Random primers (10 mers) were used to amplify the extracted DNA by the polymerase chain reaction (PCR) followed by polyacrylamide gel electrophoresis (PAGE) and silver staining. The results suggest that RAPD represents an efficient means of genome comparison, since many molecular markers were detected as genetic variations between susceptible and non-susceptible snails.
Resumo:
The precise microenvironment of Paracoccidioides brasiliensis has not yet been discovered perhaps because the methods used are not sensitive enough. We applied to this purpose the polymerase chain reaction (PCR) using three sets of specific primers corresponding to two P. brasiliensis genes. This fungus as well as several other fungi, were grown and their DNA obtained by mechanical disruption and a phenol chloroform isoamylalcohol-based purification method. The DNA served for a PCR reaction that employed specific primers from two P. brasiliensis genes that codify for antigenic proteins, namely, the 27 kDa and the 43 kDa. The lowest detection range for the 27 kDa gene was 3 pg. The amplification for both genes was positive only with DNA from P. brasiliensis; additionally, the mRNA for the 27 kDa gene was present only in P. brasiliensis, as indicated by the Northern analysis. The standardization of PCR technology permitted the amplification of P. brasiliensis DNA in artificially contaminated soils and in tissues of armadillos naturally infected with the fungus. These results indicate that PCR technology could play an important role in the search for P. brasiliensis habitat and could also be used in other ecological studies.
Resumo:
Differences were detected in the gene expression of strains of E. histolytica using RNA (RAP-PCR) and DNA fingerprinting (RAPD). Analysis of the electrophoretic profiles of the gels revealed some polymorphic markers that could be used in the individual characterization of the strains. The 260 bands generated by using five different primers for RAP-PCR, as well as RAPD, were employed in the construction of dendograms. The dendogram obtained based on the RAPD products permitted the distinction of symptomatic and asymptomatic isolates, as well the correlation between the polymorphism exhibited and the virulence of the strains. The dendogram obtained for the RAP-PCR products did not show a correlation with the virulence of the strains but revealed a high degree of intraspecific transcriptional variability that could be related to other biological features, whether or not these are involved in the pathogenesis of amebiasis.
Resumo:
RAPD markers have been used for the analysis of genetic differentiation of Aedes aegypti, because they allow the study of genetic relationships among populations. The aim of this study was to identify populations in different geographic regions of the São Paulo State in order to understand the infestation pattern of A. aegypti. The dendrogram constructed with the combined data set of the RAPD patterns showed that the mosquitoes were segregated into two major clusters. Mosquitoes from the Western region of the São Paulo State constituted one cluster and the other was composed of mosquitoes from a laboratory strain and from a coastal city, where the largest Latin American port is located. These data are in agreement with the report on the infestation in the São Paulo State. The genetic proximity was greater between mosquitoes whose geographic origin was closer. However, mosquitoes from the coastal city were genetically closer to laboratory-reared mosquitoes than to field-collected mosquitoes from the São Paulo State. The origin of the infestation in this place remains unclear, but certainly it is related to mosquitoes of origins different from those that infested the West and North region of the State in the 80's.