58 resultados para Oxygen-derived Free Radicals
Resumo:
Previous studies have verified that free radicals such as quinone moieties in organic matter participate in the redox reactions in natural systems. These functional groups were positively correlated with the increase in aromaticity and hydrophobicity of the humic substances. As an alternative to relatively complex and expensive spectroscopic methods, the redox properties of the humic substances, determined by potentiometric titrations, have been used to evaluate organic carbon stability in soil and sediments. The present study aimed to perform organic matter fractionation and isolation of humic substances from deep oceans in different isobaths (750; 1,050; 1,350; 1,650; 1,950 m) to determine their redox properties by iodimetric titrations under an inert atmosphere and specified conditions of pH and ionic strength. Sediment samples were collected to the North and South of platforms of petroleum exploration located in the North of Rio de Janeiro State, Brazil. Fractions of organic carbon and redox properties of humic substances varied with origin and depth of the samples and with position North and South of the petroleum exploration area.
Resumo:
Iontophoresis is a method of administering substances through the skin, which uses electrical current or potential to promote transdermal delivery. We focused on α-tocopherol (vitamin E), a natural antioxidant able to reduce or block the oxidation reactions induced by free radicals in biological membranes. The aim of this study was to perform electrochemical evaluation and analysis of vertical diffusion of gel + α-tocopherol undergoing iontophoresis. The results showed a reduction in peak current at 0.78 V of α-tocopherol molecules when subjected to iontophoresis, increasing the diffusion and degradation of the system.
Resumo:
The aim of the present study was to investigate a cytotoxic oxidative cell stress related and the antioxidant profile of kaempferol, quercetin, and isoquercitrin. The flavonol compounds were able to act as scavengers of superoxide anion (but not hydrogen peroxide), hypochlorous acid, chloramine and nitric oxide. Although flavonoids are widely described as antioxidants and this activity is generally related to beneficial effects on human health, here we show important cytotoxic actions of three well known flavonoids. They were able to promote hemolysis which one was exacerbated on the presence of hypochlorous acid but not by AAPH radical. Therefore, despite they expected scavenger action over free radicals an oxidants, these compounds could be very lesive to living organisms by acting over erythrocytes and maybe other cellular types.
Resumo:
We determined the effect of the antioxidants superoxide dismutase, desferrioxamine and allopurinol on the survival of male CBA mice infected intranasally with 2-5 LD50 lung influenza virus A/Aichi/2/68. Survival for at least 20 days was observed for 45% of the mice that received 1000 U/day superoxide dismutase prepared from red blood cells on days 5, 6, 7 and 8 after infection, and 75% survival was observed for mice that received the same dose on days 4, 5, 6, 7 and 8. Desferrioxamine, 25 mg/kg per day and 100 mg/kg per day injected subcutaneously, resulted in survival rates of 5 and 0%, respectively, compared to 10% survival observed for saline-injected controls. Allopurinol at doses of 5 to 50 mg/kg per day had no effect on mouse survival. These data demonstrate the efficacy of superoxide dismutase for the protection of mice against hemorrhagic lung edema. The ineffectiveness of allopurinol suggests that the xanthine oxidase system does not play a major role in hemorrhage or lung edema and that caution is necessary when desferrioxamine is administered during an acute inflammatory process accompanied by erythrocyte lysis
Resumo:
Although iron can catalyze the production of free radicals involved in LDL lipid peroxidation, the contribution of iron overload to atherosclerosis remains controversial. The description of two mutations in the HFE gene (Cys282Tyr and His63Asp) related to hereditary hemochromatosis provides an opportunity to address the question of the association between iron overload and atherosclerosis. We investigated the prevalence of HFE mutations in 160 survivors of myocardial infarction with angiographically demonstrated severe coronary atherosclerotic disease, and in 160 age-, gender- and race-matched healthy control subjects. PCR amplification of genomic DNA followed by RsaI and BclI restriction enzyme digestion was used to determine the genotypes. The frequency of the mutant Cys282Tyr allele was identical among patients and controls (0.022; carrier frequency, 4.4%), whereas the mutant His63Asp allele had a frequency of 0.143 (carrier frequency, 27.5%) in controls and of 0.134 (carrier frequency, 24.5%) in patients. Compound heterozygotes were found in 2 of 160 (1.2%) controls and in 1 of 160 (0.6%) patients. The finding of a similar prevalence of Cys282Tyr and His63Asp mutations in the HFE gene among controls and patients with coronary atherothrombotic disease, indirectly questions the possibility of an association between hereditary hemochromatosis and atherosclerosis.
Resumo:
Preeclampsia is the main cause of maternal mortality and is associated with a five-fold increase in perinatal mortality in developing countries. In spite of this, the etiology of preeclampsia is unknown. The present article analyzes the contradictory results of the use of calcium supplementation in the prevention of preeclampsia, and tries to give an explanation of these results. The proposal of an integrative model to explain the clinical manifestations of preeclampsia is discussed. In this proposal we suggest that preeclampsia is caused by nutritional, environmental and genetic factors that lead to the creation of an imbalance between the free radicals nitric oxide, superoxide and peroxynitrate in the vascular endothelium. The adequate interpretation of this model would allow us to understand that the best way of preventing preeclampsia is the establishment of an adequate prenatal control system involving adequate antioxidant vitamin and mineral supplementation, adequate diagnosis and early treatment of asymptomatic urinary and vaginal infections. The role of infection in the genesis of preeclampsia needs to be studied in depth because it may involve a fundamental change in the prevention and treatment of preeclampsia.
Resumo:
Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51% increase in oxidative stress in lungs (control group: 0.037 ± 0.002; variable stress: 0.056 ± 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57% increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 ± 0.42; stressed: 3.65 ± 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.
Resumo:
Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 ± 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.
Resumo:
We investigated the systemic and regional hemodynamic effects of early crystalloid infusion in an experimental model of septic shock induced by intravenous inoculation with live Escherichia coli. Anesthetized dogs received an intravenous infusion of 1.2 x 10(10) cfu/kg live E. coli in 30 min. After 30 min of observation, they were randomized to controls (no fluids; N = 7), or fluid resuscitation with lactated Ringer's solution, 16 ml/kg (N = 7) or 32 ml/kg (N = 7) over 30 min and followed for 120 min. Cardiac index, portal blood flow, mean arterial pressure, systemic and regional oxygen-derived variables, blood lactate, and gastric PCO2 were assessed. Rapid and progressive cardiovascular deterioration with reduction in cardiac output, mean arterial pressure and portal blood flow (~50, ~25 and ~70%, respectively) was induced by the live bacteria challenge. Systemic and regional territories showed significant increases in oxygen extraction and in lactate levels. Significant increases in venous-arterial (~9.6 mmHg), portal-arterial (~12.1 mmHg) and gastric mucosal-arterial (~18.4 mmHg) PCO2 gradients were also observed. Early fluid replacement, especially with 32 ml/kg volumes of crystalloids, promoted only partial and transient benefits such as increases of ~76% in cardiac index, of ~50% in portal vein blood flow and decreases in venous-arterial, portal-arterial, gastric mucosal-arterial PCO2 gradients (7.2 ± 1.0, 7.2 ± 1.3 and 9.7 ± 2.5 mmHg, respectively). The fluid infusion promoted only modest and transient benefits, unable to restore the systemic and regional perfusional and metabolic changes in this hypodynamic septic shock model.
Resumo:
Nitric oxide (·NO) is a diffusible messenger implicated in Trypanosoma cruzi resistance. Excess production of ·NO and oxidants leads to the generation of nitrogen dioxide (·NO2), a strong nitrating agent. Tyrosine nitration is a post-translational modification resulting from the addition of a nitro (-NO2) group to the ortho-position of tyrosine residues. Detection of protein 3-nitrotyrosine is regarded as a marker of nitro-oxidative stress and is observed in inflammatory processes. The formation and role of nitrating species in the control and myocardiopathy of T. cruzi infection remain to be studied. We investigated the levels of ·NO and protein 3-nitrotyrosine in the plasma of C3H and BALB/c mice and pharmacologically modulated their production during the acute phase of T. cruzi infection. We also looked for protein 3-nitrotyrosine in the hearts of infected animals. Our results demonstrated that C3H animals produced higher amounts of ·NO than BALB/c mice, but their generation of peroxynitrite was not proportionally enhanced and they had higher parasitemias. While N G-nitro-arginine methyl ester treatment abolished ·NO production and drastically augmented the parasitism, mercaptoethylguanidine and guanido-ethyl disulfide, at doses that moderately reduced the ·NO and 3-nitrotyrosine levels, paradoxically diminished the parasitemia in both strains. Nitrated proteins were also demonstrated in myocardial cells of infected mice. These data suggest that the control of T. cruzi infection depends not only on the capacity to produce ·NO, but also on its metabolic fate, including the generation of nitrating species that may constitute an important element in parasite resistance and collateral myocardial damage.
Resumo:
Angiotensin-converting enzyme inhibitors have been shown to improve splanchnic perfusion in distinct shock states. We hypothesized that enalaprilat potentiates the benefits of early fluid resuscitation in severe experimental sepsis, particularly in the splanchnic region. Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over a period of 30 min. Thereafter, two interventions were performed: fluid infusion (normal saline, 32 mL/kg over 30 min) and enalaprilat infusion (0.02 mg kg-1 min-1 for 60 min) in randomized groups. The following groups were studied: controls (fluid infusion, N = 4), E1 (enalaprilat infusion followed by fluid infusion, N = 5) and E2 (fluid infusion followed by enalaprilat infusion, N = 5). All animals were observed for a 120 min after bacterial infusion. Mean arterial pressure, cardiac output (CO), portal vein blood flow (PVBF), systemic and regional oxygen-derived variables, and lactate levels were measured. Rapid and progressive reductions in CO and PVBF were induced by the infusion of live bacteria, while minor changes were observed in mean arterial pressure. Systemic and regional territories showed a significant increase in oxygen extraction and lactate levels. Widening venous-arterial and portal-arterial pCO2 gradients were also detected. Fluid replacement promoted transient benefits in CO and PVBF. Enalaprilat after fluid resuscitation did not affect systemic or regional hemodynamic variables. We conclude that in this model of normotensive sepsis inhibition of angiotensin-converting enzyme did not interfere with the course of systemic or regional hemodynamic and oxygen-derived variables.
Resumo:
Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.
Resumo:
4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellataroot extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2′-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.
Resumo:
This study assessed the antioxidant, total phenolic, and physicochemical properties of in vitro Terminalia Catappa Linn (locally called castanhola) using the DPPH assay. The castanhola fruits had an average weight of 19.60 ± 0.00 g, combining shell, pulp, and seed weight, and a soluble solids content of 8 °Brix. The chemical composition was determined with predominance of carbohydrates (76,88 ± 0,58%).The titration method was used to determine Vitamin C content using 2,6-dichlorophenolindophenol (DCFI), known as reactive Tillmans resulting in no significant levels. Aqueous extracts of castanhola pulp showed a higher concentration of phenolics, 244.33 ± 18.86 GAE.g-1 of fruit, and alcoholic extracts, 142.84 ± 2.09 GAE.g-1 of fruit. EC50 values of the aqueous extract showed a greater ability to scavenge free radicals than the alcoholic extracts. The fruit had a significant content of phenolic compounds and high antioxidant capacity.
Resumo:
Antioxidants have the ability to neutralize free radicals produced in the body during lipid oxidation. The objective in this article was to study the effect of the barley extract on lipid oxidation in rats subjected to a high-fat diet. The experiment lasted 67 days. The animals were separated into three experimental groups: standard (P), high-fat diet group (L), and group with high-fat diet supplemented with barley extract (C). The feed intake of L and C groups was the lowest (p < 0.05). The treatments did not influence weight gain, organ weight, and the blood parameters measured. However, the levels of malondialdehyde present in the liver tissue were higher in the L group and lower in the P and C groups. Therefore, the results indicated an increased level of lipid peroxidation in the liver of rats subjected to high-fat diet, which was reduced by the consumption of barley.