87 resultados para Oxygen -- Measurement
Resumo:
Ozonization of theobroma oil at different applied ozone dosages was carried out with measurement of peroxide index values, oxygen percentage content and fatty acids composition. The comparison of peroxide values with percentage content of oxygen at different applied ozone dosages showed good correlation (r=0.9923). Unsaturated fatty acids and triacylglycerols decrease with ozone applied dosage due to ozone reaction with double bonds. Small amounts of oleic acid were consumed with applied ozone dosage at 35 mg/g, which demonstrated that peroxide values and oxygen content were not principally increased by the ozone attack on the double bonds, but other mechanisms could be involved in the reaction system.
Resumo:
The 3-methylindole (3MI) oxygenation sensitized by psoralen (PSO) has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx) mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1) is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1) suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures.
Resumo:
Ozonation of sunflower oils with genetic modification High Oleic and High Oleic-Palmitic (AO and PO respectively) and without modification, High Linoleic (AL) at different applied ozone dosages was carried out with measurement of peroxide and acidity indexes values, fatty acids composition, oxygen percentage content and antimicrobial activity. The comparison of peroxides indexes and oxygen content at different applied ozone dosages in each oil showed good correlation (r = 0,99). Higher amount of oleic acid was consumed at higher applied ozone dosage in PO oil than AO oil, which can be related to the increase of acidity index. The antimicrobial activity was better for AL and PO ozonized oils.
Resumo:
To investigate oxidative lesions and strand breaks induction by singlet molecular oxygen (¹O2), supercoiled-DNA plasmid was treated with thermo-dissociated DHPNO2 and photoactivated-methylene blue. DNA lesions were detected by Fpg that cleaves DNA at certain oxidized bases, and T4-endoV, which cleaves DNA at cyclobutane pyrimidine dimers and apurinic/apyrimidinic (AP) sites. These cleavages form open relaxed-DNA structures, which are discriminated from supercoiled-DNA. DHPNO2 or photoactivated-MB treatments result in similar plasmid damage profile: low number of single-strand breaks or AP-sites and high frequency of Fpg-sensitive sites; confirming that base oxidation is the main product for both reactions and that ¹O2 might be the most likely intermediate that reacts with DNA.
Resumo:
Nicotine, an oxidizing agent, is certainly one of the most widely used alkaloids in the world. It is, together with its main metabolite, cotinine, responsible for tobacco-dependence. The use of tobacco is closely associated with lung disease, morphological leukocyte modification and generation of oxidant species. The aim of this study was to look for a possible relationship between cotinine, oxidant species generation and oxidative processes. After studying the action of cotinine in some chemical oxidation models and on the enzymatic kinetics of peroxidases (myeloperoxidase and horseradish peroxidase), we concluded that cotinine does not act directly upon H2O2, HOCl, taurine chloramines, horseradish peroxidase or myeloperoxidase.
Resumo:
Solar radiation is an important factor for plant growth, being its availability to understory crops strongly modified by trees in an Agroforestry System (AFS). Coffee trees (Coffea arabica - cv. Obatã IAC 1669-20) were planted at a 3.4 x 0.9 m spacing inside and aside rows of monocrops of 12 year-old rubber trees (Hevea spp.), in Piracicaba-SP, Brazil (22º42'30" S, 47º38'00" W - altitude: 546m). One-year-old coffee plants exposed to 25; 30; 35; 40; 45; 80; 90; 95 and 100% of the total solar radiation were evaluated according to its biophysical parameters of solar radiation interception and capture. The Goudriaan (1977) adapted by Bernardes et al. (1998) model for radiation attenuation fit well to the measured data. Coffee plants tolerate a decrease in solar radiation availability to 50% without undergoing a reduction on growth and LAI, which was approximately 2m².m-2 under this condition. Further reductions on the availability of solar radiation caused a reduction in LAI (1.5m².m-2), thus poor land cover and solar radiation interception, resulting in growth reduction.
Resumo:
Quantifying soil evaporation is required on studies of soil water balance and applications aiming to improve water use efficiency by crops. The performance of a microlysimeter (ML) to measure soil evaporation under irrigation and non-irrigation was evaluated. The MLs were constructed using PVC tubes, with dimensions of 100 mm inner diameter, 150 mm depth and 2.5 mm wall thickness. Four MLs were uniformly distributed on the soil surface of two weighing lysimeters conducted under bare soil, previously installed at Iapar, in Londrina, PR, Brazil. The lysimeters had 1.4 m width, 1.9 m length and 1.3 m depth and were conducted with and without irrigation. Evaporation measurements by MLs (E ML) were compared with measurements by lysimeters (E L) during four different periods in the year. Differences between E ML and E L were small either for low or high atmospheric demand and also for either irrigated or non-irrigated conditions, which indicates that the ML tested here is suitable for measurement of soil evaporation.
Resumo:
The development of new methodologies and tools that enable to determine the water content in soil is of fundamental importance to the practice of irrigation. The objective of this study was to evaluate soil matric potential using mercury tensiometer and puncture digital tensiometer, and to compare the gravimetric soil moisture values obtained by tensiometric system with gravimetric soil moisture obtained by neutron attenuation technique. Four experimental plots were maintained with different soil moisture by irrigation. Three repetitions of each type of tensiometer were installed at 0.20 m depth. Based on the soil matric potential and the soil water retention curve, the corresponding gravimetric soil moisture was determined. The data was then compared to those obtained by neutron attenuation technique. The results showed that both tensiometric methods showed no difference under soil matric potential higher than -40 kPa. However, under drier soil, when the water was replaced by irrigation, the soil matric potential of the puncture digital tensiometer was less than those of the mercury tensiometer.
Resumo:
Studies on the effects of temperature and time of incubation of wastewater samples for the estimation of biodegradable organic matter through the biochemical oxygen demand (BOD), that nowadays are rare, considering that the results of the classic study of STREETER & PHELPS(1925) have been accepted as standard. However, there are still questions how could be possible to reduce the incubation time; whether the coefficient of temperature (θ) varies with the temperature and with the type of wastewater and if it approaches 1.047. Aiming the elucidation of these questions, wastewater samples of dairy, swine and sewage treated in septic tanks were incubated at temperatures of 20, 30 and 35 °C, respectively for 5, 3.16 and 2.5 days. From the parameter of deoxygenation coefficient at 20 °C (k20), θ30 and θ35 were calculated. The results indicated that θ values changes with the type of wastewater, however does not vary in the temperature range between 30 and 35 °C, and that the use of 1.047 value did not implied significant differences in obtaining k in a determined T temperature. Thus, it is observed that the value of θ can be used to estimate the required incubation time of the samples at different temperatures.
Resumo:
PURPOSE: To evaluate genes differentially expressed in ovaries from lean (wild type) and obese (ob/ob) female mice and cyclic AMP production in both groups.METHODS: The expression on messenger RNA levels of 84 genes concerning obesity was analyzed through the PCR array, and cyclic AMP was quantified by the enzyme immunoassay method.RESULTS: The most downregulated genes in the Obesity Group included adenylate cyclase-activating polypeptide type 1, somatostatin, apolipoprotein A4, pancreatic colipase, and interleukin-1 beta. The mean decrease in expression levels of these genes was around 96, 40, 9, 4.2 and 3.6-fold, respectively. On the other hand, the most upregulated genes in the Obesity Group were receptor (calcitonin) activity-modifying protein 3, peroxisome proliferator activated receptor alpha, calcitonin receptor, and corticotropin-releasing hormone receptor 1. The increase means in the expression levels of such genes were 2.3, 2.7, 4.8 and 6.3-fold, respectively. The ovarian cyclic AMP production was significantly higher in ob/ob female mice (2,229±52 fMol) compared to the Control Group (1,814±45 fMol).CONCLUSIONS: Obese and anovulatory female mice have reduced reproductive hormone levels and altered ovogenesis. Several genes have their expression levels altered when leptin is absent, especially adenylate cyclase-activating polypeptide type 1.
Resumo:
Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP) and a commercial blood preparation (conditioned blood product - CBP)¹ - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60) were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA), and evaluated by flow cytometry for the production of reactive oxygen species (ROS). Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05). There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.
Resumo:
One of the problems that slows the development of off-line programming is the low static and dynamic positioning accuracy of robots. Robot calibration improves the positioning accuracy and can also be used as a diagnostic tool in robot production and maintenance. A large number of robot measurement systems are now available commercially. Yet, there is a dearth of systems that are portable, accurate and low cost. In this work a measurement system that can fill this gap in local calibration is presented. The measurement system consists of a single CCD camera mounted on the robot tool flange with a wide angle lens, and uses space resection models to measure the end-effector pose relative to a world coordinate system, considering radial distortions. Scale factors and image center are obtained with innovative techniques, making use of a multiview approach. The target plate consists of a grid of white dots impressed on a black photographic paper, and mounted on the sides of a 90-degree angle plate. Results show that the achieved average accuracy varies from 0.2mm to 0.4mm, at distances from the target from 600mm to 1000mm respectively, with different camera orientations.
Resumo:
We present the results obtained with a ureterovesical implant after ipsilateral ureteral obstruction in the rat, suitable for the study of renal function after deobstruction in these animals. Thirty-seven male Wistar rats weighing 260 to 300 g were submitted to distal right ureteral ligation and divided into 3 groups, A (N = 13, 1 week of obstruction), B (N = 14, 2 weeks of obstruction) and C (N = 10, 3 weeks of obstruction). The animals were then submitted to ureterovesical implantation on the right side and nephrectomy on the left side. During the 4-week follow-up period serum levels of urea and creatinine were measured on the 2nd, 7th, 14th, 21st and 28th day and compared with preoperative levels. The ureterovesical implantation included a psoas hitch procedure and the ureter was pulled into the bladder using a transvesical suture. During the first week of the postoperative period 8 animals died, 4/13 in group A (1 week of obstruction) and 4/14 in group B (2 weeks of obstruction). When compared to preoperative serum levels, urea and creatinine showed a significant increase (P<0.05) on the 2nd postoperative day in groups A and B, with a gradual return to lower levels. However, the values in group B animals were higher than those in group A at the end of the follow-up. In group C, 2/10 animals (after 3 weeks of obstruction) were sacrificed at the time of ureterovesical implantation due to infection of the obstructed kidneys. The remaining animals in this group were operated upon but all of them died during the first week of follow-up due to renal failure. This technique of ureterovesical implantation in the rat provides effective drainage of the upper urinary tract, permitting the development of an experimental model for the study of long-term renal function after a period of ureteral obstruction
Resumo:
The present study deals with a species of enteropneust, Glossobalanus crozieri, focusing on two aspects of its respiration: a) oxygen consumption and body mass, and b) the influence of environmental oxygen tension on the respiratory rate. Preliminarily, the body water content was shown to be 85% of the whole body weight. The regression coefficient of the oxygen consumption on the wet body mass (0.578) seems to agree with the view that in enteropneusts respiration is mainly cutaneous. The respiratory rate was significantly reduced at O2 tensions from 76 mmHg downwards, suggesting conformity rather than regulation
Resumo:
Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX) besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression) or short-term (post-translational modification, allosteric activation) regulated. Electron distribution (partitioning) between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach). Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon) and with harmful reactive oxygen species formation.