39 resultados para ORGANIZATION AND ADMINISTRATION
Resumo:
The physicochemical properties (solubilization, structural organization and stability) of meso-tetrakis(p-methoxyphenyl)porphyrin (TMPP), a promising photosensitizer for photodynamic therapy, solubilized in polymeric micelles of tri-block copolymers PluronicTM P-123 and F-127, were studied. The formulations obtained by the solid dispersion method led to monomerization of TMPP in these copolymers. Solubility studies showed that P-123 solubilizes double the photosensitizer than F-127. The self-aggregation phenomenon was affected by the [TMPP]/[poloxamer] ratio and medium temperature. The decrease in the temperature of these systems promoted the formation of different kinds of TMPP aggregates intrinsically connected with the structural changes occurring in the micelles.
Resumo:
Hystricognathi represent a monophyletic taxon within Rodentia. Since phylogenetically analyzed morphological systems are essential for revealing evolutionary processes, this study identifies evolutionary character transformations on the stem lineage of Hystricognathi as derived from the author's own work and the literature. Data so far indicate that evolutionary transformations in the rostral head region, the loss of tactile ability in the outer nasal skin and the mobile arrangement of the associated cartilage, were allied with a switch from omnivorous to herbivorous and fiber-rich nutrition. Additional character transformations in the skull assist in digesting such food. Structures associated with reproduction and placentation show a remarkable pro portion of derived character conditions: the chorioallantoic placenta has a ring-shaped organization and growth structure which optimizes the capacity for passive diffusion, a subplacenta occurred as a specialized region responsible for placental invasion and the inverted yolk sac facilitates substance exchange with the main placenta. Finally, precocial newborns evolved as a derived condition within Rodentia. All things considered, a mode of reproduction is indicated, which does not demand excessive additional energy intake by the mother and is in accordance with her low energetic diet. Hystricognathi possess major character transformations that represent prerequisites for their successful radiation at the time when more open ecosystems and grasslands evolved during Earth history. The analysis resulted in the reconstruction of a life-near picture of the hystricognath stem species pattern with high explanatory power in terms of changes in space and time and their interdependence with biodiversity.
Resumo:
A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome
Resumo:
Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i) in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN), ii) in many non-mammalian vertebrates of all classes (but not in any mammals) the pineal gland is both a photoreceptor and a circadian oscillator, and iii) in all non-mammalian vertebrates (but not in any mammals) there are extraretinal (and extrapineal) circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates
Resumo:
The selective serotonin reuptake inhibitor fluoxetine (FLX) is widely prescribed for depression and anxiety-related disorders. On the other hand, enhanced serotonergic transmission is known to be classically related to anxiety. In this study, the effects of acute (5.0 mg/kg) and chronic (5.0 mg/kg, 22 days) FLX were investigated in both food-deprived and non-deprived rats tested in the elevated plus-maze. Significant main effects of the three factors (drug, food condition and administration regimen) were observed, but no interaction between them. The administration of either acute or chronic FLX resulted in an anxiogenic effect, as detected by a significant reduction in the percentage of time spent in the open arms and in the percentage of open arm entries. Food deprivation yielded an anxiolytic-like profile, probably related to changes in locomotor activity. The administration regimen resulted in an anxiolytic profile in chronically treated rats, as would be expected after 22 days of regular handling. The anxiogenic action of acute FLX is consistent with both its neurochemical and clinical profile. The discrepancy between the anxiogenic profile of chronic FLX and its therapeutic uses is discussed in terms of possible differences between the type of anxiety that is measured in the plus-maze and the types of human anxiety that are alleviated by fluoxetine.
Resumo:
Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG) are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994) 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980) 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.
Resumo:
The maternal history of type 2 diabetes mellitus (DM) has been reported more frequently in patients with type 2 DM than paternal history. The aim of the present study was to determine if there was an association between maternal history of DM and the presence of chronic complications or metabolic syndrome (MetS) in patients with type 2 DM. A cross-sectional study was conducted with 1455 patients with type 2 DM. All outpatients with type 2 diabetes attending the endocrine clinics who fulfilled the eligibility criteria were included. Familial history of DM was determined with a questionnaire. Diabetic complications were assessed using standard procedures. The definition of MetS used was that of the World Health Organization and the National Cholesterol Education Program's Adult Treatment Panel III report criteria. Maternal history of DM was present in 469 (32.3%), absent in 713 (49.1%) and unknown in 273 patients (18.7%). Paternal history of DM was positive in 255 (17.6%), negative in 927 (63.8%) and unknown in 235 patients (16.1%). The frequency of microvascular chronic complications in patients with and without a positive maternal history of DM was similar: diabetic nephropathy (51.5 vs 52.5%), diabetic retinopathy (46.0 vs 41.7%), and diabetic sensory neuropathy (31.0 vs 37.1%). The prevalence of macrovascular chronic complications and MetS was also similar. Patients with type 2 DM were more likely to have a maternal than a paternal history of DM, although maternal history of DM was not associated with an increased prevalence of chronic complications or MetS.
Resumo:
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
Resumo:
In this study, biomarkers and transcriptional factor motifs were identified in order to investigate the etiology and phenotypic severity of Down syndrome. GSE 1281, GSE 1611, and GSE 5390 were downloaded from the gene expression ominibus (GEO). A robust multiarray analysis (RMA) algorithm was applied to detect differentially expressed genes (DEGs). In order to screen for biological pathways and to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the database for annotation, visualization, and integrated discovery (DAVID) was used to carry out a gene ontology (GO) function enrichment for DEGs. Finally, a transcriptional regulatory network was constructed, and a hypergeometric distribution test was applied to select for significantly enriched transcriptional factor motifs. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were each up-regulated two-fold in Down syndrome samples compared to normal samples; of these, SON and TTC3 were newly reported. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were located on human chromosome 21 (mouse chromosome 16). The DEGs were significantly enriched in macromolecular complex subunit organization and focal adhesion pathways. Eleven significantly enriched transcription factor motifs (PAX5, EGR1, XBP1, SREBP1, OLF1, MZF1, NFY, NFKAPPAB, MYCMAX, NFE2, and RP58) were identified. The DEGs and transcription factor motifs identified in our study provide biomarkers for the understanding of Down syndrome pathogenesis and progression.