39 resultados para Noradrenaline Uptake
Resumo:
Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02), to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003), and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02). In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02). A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.
Resumo:
The aim of the present study was to investigate the effects of high concentrations of KCl in releasing noradrenaline from sympathetic nerves and its actions on postsynaptic alpha-adrenoceptors. We measured the isotonic contractions induced by KCl in the isolated rat anococcygeus muscle under different experimental conditions. The contractile responses induced by KCl were inhibited by alpha-adrenoceptor antagonists in 2.5 mM Ca2+ solution. Prazosin reduced the maximum effect from 100 to 53.9 ± 10.2% (P<0.05) while the pD2 values were not changed. The contractile responses induced by KCl were abolished by prazosin in Ca2+-free solution (P<0.05). Treatment of the rats with reserpine reduced the maximum effect induced by KCl as compared to the contractile responses induced by acetylcholine from 339.5 ± 157.8 to 167.3 ± 65.5% (P<0.05), and increased the pD2 from 1.57 ± 0.01 to 1.65 ± 0.006 (P<0.05), but abolished the inhibitory effect of prazosin (P<0.05). In contrast, L-NAME increased the contractile responses induced by 120 mM KCl by 6.2 ± 2.3% (P<0.05), indicating that KCl could stimulate the neurons that release nitric oxide, an inhibitory component of the contractile response induced by KCl. Our results indicate that high concentrations of KCl induce the release of noradrenaline from noradrenergic neurons, which interacts with alpha1-adrenoceptors in smooth muscle cells, producing a contractile response in 2.5 mM Ca2+ (100%) and in Ca2+-free solution, part of which is due to a direct effect of KCl on the rat anococcygeus muscle.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
Phosphatidylserine (PS) exposure occurs during the cell death program and fluorescein-labeled lactadherin permits the detection of PS exposure earlier than annexin V in suspended cell lines. Adherent cell lines were studied for this apoptosis-associated phenomenon to determine if PS probing methods are reliable because specific membrane damage may occur during harvesting. Apoptosis was induced in the human tongue squamous carcinoma cell line (Tca8113) and the adenoid cystic carcinoma cell line (ACC-2) by arsenic trioxide. Cells were harvested with a modified procedure and labeled with lactadherin and/or annexin V. PS exposure was localized by confocal microscopy and apoptosis was quantified by flow cytometry. The detachment procedure without trypsinization did not induce cell damage. In competition binding experiments, phospholipid vesicles competed for more than 95 and 90% of lactadherin but only about 75 and 70% of annexin V binding to Tca8113 and ACC-2 cells. These data indicate that PS exposure occurs in three stages during the cell death program and that fluorescein-labeled lactadherin permitted the detection of early PS exposure. A similar pattern of PS exposure has been observed in two malignant cell lines with different adherence, suggesting that this pattern of PS exposure is common in adherent cells. Both lactadherin and annexin V could be used in adherent Tca8113 and ACC-2 cell lines when an appropriate harvesting procedure was used. Lactadherin is more sensitive than annexin V for the detection of PS exposure as the physical structure of PS in these blebs and condensed apoptotic cell surface may be more conducive to binding lactadherin than annexin V.
Resumo:
We determined the response characteristics and functional correlates of the dynamic relationship between the rate (Δ) of oxygen consumption ( O2) and the applied power output (work rate = WR) during ramp-incremental exercise in patients with mitochondrial myopathy (MM). Fourteen patients (7 males, age 35.4 ± 10.8 years) with biopsy-proven MM and 10 sedentary controls (6 males, age 29.0 ± 7.8 years) took a ramp-incremental cycle ergometer test for the determination of the O2 on-exercise mean response time (MRT) and the gas exchange threshold (GET). The ΔO2/ΔWR slope was calculated up to GET (S1), above GET (S2) and over the entire linear portion of the response (S T). Knee muscle endurance was measured by isokinetic dynamometry. As expected, peak O2 and muscle performance were lower in patients than controls (P < 0.05). Patients had significantly lower ΔO2/ΔWR than controls, especially the S2 component (6.8 ± 1.5 vs 10.3 ± 0.6 mL·min-1·W-1, respectively; P < 0.001). There were significant relationships between ΔO2/ΔWR (S T) and muscle endurance, MRT-O2, GET and peak O2 in MM patients (P < 0.05). In fact, all patients with ΔO2/ΔWR below 8 mL·min-1·W-1 had severely reduced peak O2 values (<60% predicted). Moreover, patients with higher cardiopulmonary stresses during exercise (e.g., higher Δ ventilation/carbon dioxide output and Δ heart rate/ΔO2) had lower ΔO2/ΔWR (P < 0.05). In conclusion, a readily available, effort-independent index of aerobic dysfunction during dynamic exercise (ΔO2/ΔWR) is typically reduced in patients with MM, being related to increased functional impairment and higher cardiopulmonary stress.
Resumo:
18F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) is widely used to diagnose and stage non-small cell lung cancer (NSCLC). The aim of this retrospective study was to evaluate the predictive ability of different FDG standardized uptake values (SUVs) in 74 patients with newly diagnosed NSCLC. 18F-FDG PET/CT scans were performed and different SUV parameters (SUVmax, SUVavg, SUVT/L, and SUVT/A) obtained, and their relationship with clinical characteristics were investigated. Meanwhile, correlation and multiple stepwise regression analyses were performed to determine the primary predictor of SUVs for NSCLC. Age, gender, and tumor size significantly affected SUV parameters. The mean SUVs of squamous cell carcinoma were higher than those of adenocarcinoma. Poorly differentiated tumors exhibited higher SUVs than well-differentiated ones. Further analyses based on the pathologic type revealed that the SUVmax, SUVavg, and SUVT/L of poorly differentiated adenocarcinoma tumors were higher than those of moderately or well-differentiated tumors. Among these four SUV parameters, SUVT/Lwas the primary predictor for tumor differentiation. However, in adenocarcinoma, SUVmax was the determining factor for tumor differentiation. Our results showed that these four SUV parameters had predictive significance related to NSCLC tumor differentiation; SUVT/L appeared to be most useful overall, but SUVmax was the best index for adenocarcinoma tumor differentiation.
Resumo:
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
The aims of this research were to determine the effect of different conditions of the marination stage on the salt and acid uptake, immersion time, and sensorial characteristics during the marinating process of anchovy (Engraulis anchoita). Different solution:fish ratios and the agitation effect during this stage were analyzed. The ratios used were: 0.77:1, 3:1 and 10:1 (with and without agitation). An increase of marinating solution:fish ratio causes a higher speed of acid and salt penetration The product obtained with the 10:1 ratio had a dry and fibrous texture and a slightly salty taste. Salt concentration was statistically significantly lower (p < 0.01) in the samples with agitation. Agitation did not influence the acid uptake, and the salt penetration speed decreased, but rancidity was detected in this product. The ratio 3:1 decreases the marinating time without damaging sensory attributes and can be used in the fish marinating process.