60 resultados para Neural algorithm
Resumo:
The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.
Resumo:
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.
Resumo:
Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.
Resumo:
ABSTRACT The objective of this study was to evaluate the thermoregulatory response of dairy buffaloes in pre-milking and post-milking. To identify animal thermoregulatory capacity, skin surface temperatures were taken by an infrared thermometer (SST), a thermographic camera (MTBP) as well as respiratory rate records (RR). Black Globe and Humidity Index (BGHI), radiating thermal load (RTL) and enthalpy (H) were used to characterize the thermal environment. Artificial Neural Networks analyzed those indices as well as animal physiological data, using a single layer trained with the least mean square (LMS) algorithm. The results indicated that pre-milking and post-milking environments reached BGHI, RR, SST and MTBP values above thermal neutrality zone for buffaloes. In addition, limits of surface skin temperatures were mostly influenced by changing ambient conditions to the detriment of respiratory rates. It follows that buffaloes are sensitive to environmental changes and their skin temperatures are the best indicators of thermal comfort in relation to respiratory rate.
Resumo:
Objetivos: avaliar os níveis de folatos maternos e fetais gestações com malformações por defeitos de fechamento do tubo neural (DFTN). Métodos: o estudo foi do tipo caso-controle, no qual 14 casos de fetos com DFTN (grupo estudo) e 14 casos de fetos com outras malformações (grupo controle) foram estudados em gestantes de baixo risco para DFTN. Propusemo-nos a dosar o ácido fólico, na sua forma total e metilada, nos compartimentos fetal e materno, utilizando dosagens séricas e tissulares (eritrocitárias), assim como o volume corpuscular médio, o hematócrito e a hemoglobina. As coletas foram realizadas imediatamente antes da interrupção da gestação. Os resultados nos dois grupos foram comparados pelo teste t de Student, método de amostras pareados pela idade gestacional. Resultados: não se encontrou diferença nas taxas de folatos fetais e nos parâmetros hematológicos dos fetos, entre os dois grupos. Por outro lado, taxas anormalmente baixas de folatos foram encontradas nos eritrócitos das mães portadoras de fetos com DFTN, tanto para as formas totais(293,9 ng/mL contra 399,1 ng/mL no grupo controle, p=0,01) quanto para as formas metiladas (201,9 ng/mL contra 314,0 ng/mL para o grupo controle, p=0,02). Os folatos séricos maternos não se mostraram diferentes nos grupos estudo e controle. Conclusão: este estudo demonstrou que há uma menor taxa de folatos intratissulares, nas mães de fetos acometidos por DFTN, porém com taxas de folatos séricos semelhantes em relação ao grupo controle.
Resumo:
Objetivo: verificar os níveis de folatos, vitamina B12 e ferritina em pacientes cujos fetos apresentaram defeitos de tubo neural (DTN). O folato sangüíneo e a vitamina B12 atuam como cofatores para as enzimas envolvidas na biossíntese do DNA. A interrupção deste processo pode impedir o fechamento do tubo neural. A suplementação vitamínica contendo folato pode reduzir as taxas de ocorrência de defeitos de tubo neural, embora exista a preocupação de que esta prevenção possa mascarar a deficiência de vitamina B12. Métodos: dosagens de vitamina B12 e ferritina pelo método de enzimaimunoensaio com micropartículas e a dosagens de ácido fólico pelo método de captura iônica (IMx ABBOTT). Resultados: a porcentagem de gestantes com deficiência de vitamina B12 (níveis séricos < 150 pg/ml) foi de 11,8%. Não houve nenhum caso de deficiência de folato (níveis séricos < 3,0 ng/ml). A prevalência de gestantes com deficiência nos estoques de ferro foi de 47,1% (níveis séricos < 12 ng/ml). Conclusões: com os resultados encontrados neste estudo (prevalência de 11,8% de deficientes em vitamina B12 e 0% de deficiência de folato), sugerimos que a suplementação se realize após a determinação da vitamina B12 sérica.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
Os primeiros estudos demonstrando o potencial de trandiferenciação neural das células-tronco mesenquimais (CTMs) provenientes da medula óssea (MO) foram conduzidos em camundogos e humanos no início da década de 2000. Após esse período, o número de pesquisas e publicações com o mesmo propósito tem aumentado, mas com raros ou escassos estudos na espécie equina. Nesse sentindo, o objetivo desse trabalho foi avaliar o potencial in vitro da transdiferenciação neural das CTMs provenientes da MO de equinos utilizando-se dois protocolos: P1 (forksolin e ácido retinóico) e P2 (2-βmecarptoetanol). Após a confirmação das linhagens mesenquimais, pela positividade para o marcador CD90 (X=97,94%), negatividade para o marcador CD34 e resposta positiva a diferenciação osteogênica, as CTMs foram submetidas a transdiferenciação neural (P1 e P2) para avaliação morfológica e expressão dos marcadores neurais GFAP e β3 tubulina por citometria de fluxo. Os resultados revelaram mudanças morfológicas em graus variados entre os protocolos testados. No protocolo 1, vinte quatro horas após a incubação com o meio de diferenciação neural, grande proporção de células (>80%) apresentaram morfologia semelhante a células neurais, caracterizadas por retração do corpo celular e grande número de projeções protoplasmáticas (filopodia). Por outro lado, de forma comparativa, já nos primeiros 30 minutos após a exposição ao antioxidante β-mercaptoetanol (P2) as CTMs apresentaram rápida mudança morfológica caracterizada principalmente por retração do corpo celular e menor número de projeções protoplasmáticas. Também ficou evidenciado com o uso deste protocolo, menor aderência das células após tempo de exposição ao meio de diferenciação, quando comparado ao P1. Com relação a análise imunofenotípica foi observado uma maior (P<0,001) expressão dos marcadores GFAP e β3 tubulina ao término do P2 quando comparado ao P1. A habilidade das CTMs em gerar tipos celulares relacionados a linhagem neural é complexa e multifatorial, dependendo não só dos agentes indutores, mas também do ambiente no qual estas células são cultivadas. Desta forma um maior número de estudos é necessário para o melhor entendimento do processo de transdiferenciação neural a partir de CTMs de equinos.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.