108 resultados para Modified mass in hot-dense medium


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral blood leukocytes from different animals were isolated from whole blood and maintained in Dulbeco's medium containing homologous serum without antibiotics. After 72 hrs microscopic examination of these cells showed that most animals were infected with Ehrlichia. Observation of thin blood smears from the same animals showed that only two were positive for Ehrlichia. The results of this investigation show that leukocyte culture is superior to the traditional thin blood film method in the detection of Ehrlichia and that asymptomatic carriers are easily detected. The method is inexpensive and does not require specific cell lines although it is necessary to use sterile sera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3%) of isolates tested were phospholipase positive and 16 (44.4%) were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%). Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001) and among the strains from different sites of origin (p=0.014). Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%). Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901). CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: INTRODUCTION: Few studies have addressed the primary characteristics of patients infected with hepatitis B virus (HBV) in the general population, especially those living in small- and medium-sized cities in Brazil. We aimed to determine the clinical, demographic, and epidemiologic characteristics of patients diagnosed with HBV who were followed up at an infectious diseases clinic of a public hospital in State of São Paulo, Brazil. METHODS: Medical records of patients aged >18 years and diagnosed with HBV infection between January 2000 and December 2013 were reviewed. RESULTS: Seventy-five patients were enrolled with male-female main infection-associated risk factors; 9 (12%) were co-infected with human immunodeficiency virus (HIV), 5 (6.7%) with hepatitis C virus (HCV), and 3 (4%) were co-infected with both HIV and HCV. Antiviral HBV therapy was applied in 21 (28%) patients and tenofovir monotherapy was the most prescribed medication. After approximately 2 years of antiviral treatment, the HBV-DNA viral load was undetectable in 12 (92.3%) patients and lower levels of alanine aminotransferase were found in these patients. CONCLUSIONS: Over a 13-year interval, very few individuals infected with HBV were identified, highlighting the barriers for caring for patients with HBV in developing countries. New measures need to be implemented to complement curative practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: INTRODUCTION: To characterize Trypanosoma cruzi (TcI) isolated from a Panstrongylus megistus specimen found in one of the biggest metropolitan areas of Latin America, the relationship between the TcI group of T. cruzi and the transmission cycle in the urban environment was studied. METHODS: The T. cruzi strain, Pm, was isolated in a culture medium from the evolutionary forms present in the hindgut of a live male specimen of P. megistus found in the Jabaquara subway in São Paulo City. The sample from the triatomine showed trypomastigote forms of Trypanosomatidae, which were inoculated in the peritoneum of Balb/c mice. The sample was then inoculated in Liver Infusion Tryptose medium and J774 cells for the molecular identification and characterization of the parasite. The Pm strain of T. cruzi was identified by isolation in axenic culture medium, and based on the morphology, cell infection, growth kinetics, and molecular characterization. RESULTS: After isolation, the protozoan was identified as T. cruzi. No parasites were detected in the peripheral blood of the animal, which can be a characteristic inherent to the strain of T. cruzi that was isolated. Cell invasion assays were performed in triplicate in the J774 cell line to confirm the invasive ability of the Pm strain and revealed amastigote forms of the parasite within macrophages. CONCLUSIONS: Our biological and molecular characterizations helped understand parasite-host interactions and their evolutionary history in context of the associations between vectors, ecotopes, hosts, and groups of the parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Infertility is one of the less common presenting features associated with testicular tumors. We evaluated the histologic and biochemical findings, and pregnancy outcome in patients presenting with infertility who were found to have testicular tumors. METHODS: Seven patients with infertility were found to have testicular cancer over a 15-year period. All patients had a testicular ultrasound evaluation. The indications for the ultrasound were testicular pain in 2 patients, suspicious palpable mass in 4, and to rule out the presence of germ cell neoplasia in a patient with carcinoma in situ detected on a previous biopsy. Physical exam, histological findings, hormonal levels, tumor markers, and pregnancy outcome results were recorded from the patients medical charts. RESULTS: Two men had elevated serum follicle stimulant hormone and luteinizing hormone levels, 1 of them had an abnormally low serum testosterone level. Tumor markers were normal in all patients. In 4 patients the tumor was on the right side and in 3 on the left. The histological diagnoses were seminoma (n = 5), Leydig cell tumor (n = 1), and carcinoma in situ (n = 1). Of the 7 patients, 5 underwent adjuvant radiation therapy. Two patients had sperm cryopreserved. Follow up on fertility status was available in 6 cases. One patient has established a pregnancy and 5 did not achieve a pregnancy after treatment for their cancer. CONCLUSIONS: Most of the men who have testicular cancer and male infertility have a seminona. Therefore, men who present with infertility should be thoroughly investigated to rule out such serious, concomitant diseases along with their infertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the efficacy of a systematic model of care for patients with chest pain and no ST segment elevation in the emergency room. METHODS: From 1003 patients submitted to an algorithm diagnostic investigation by probability of acute ischemic syndrome. We analyzed 600 ones with no elevation of ST segment, then enrolled to diagnostic routes of median (route 2) and low probability (route 3) to ischemic syndrome. RESULTS: In route 2 we found 17% acute myocardial infarction and 43% unstable angina, whereas in route 3 the rates were 2% and 7%, respectively. Patients with normal/non--specific ECG had 6% probability of AMI whereas in those with negative first CKMB it was 7%; the association of the 2 data only reduced it to 4%. In patients in route 2 the diagnosis of AMI could only be ruled out with serial CKMB measurement up to 9 hours, while in route 3 it could be done in up to 3 hours. Thus, sensitivity and negative predictive value of admission CKMB for AMI were 52% and 93%, respectively. About one-half of patients with unstable angina did not disclose objective ischemic changes on admission. CONCLUSION: The use of a systematic model of care in patients with chest pain offers the opportunity of hindering inappropriate release of patients with ACI and reduces unnecessary admissions. However some patients even with normal ECG should not be released based on a negative first CKMB. Serial measurement of CKMB up to 9 hours is necessary in patients with medium probability of AMI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the effects of weight reduction with 10mg of sibutramine or placebo on blood pressure during 24 hours (ambulatory blood pressure monitoring), on left ventricular mass, and on antihypertensive therapy in 86 obese and hypertensive patients for 6 months. METHODS: The patients underwent echocardiography, ambulatory blood pressure monitoring, and measurement of the levels of hepatic enzymes prior to and after treatment with sibutramine or placebo. RESULTS: The group using sibutramine had a greater weight loss than that using placebo (6.7% versus 2.5%; p<0.001), an increase in heart rate (78.3±7.3 to 82±7.9 bpm; p=0.02), and a reduction in the left ventricular mass/height index (105±29.3 versus 96.6±28.58 g/m; p=0.002). Both groups showed similar increases in the levels of alkaline phosphatase and comparable adjustments in antihypertensive therapy; blood pressure, however, did not change. CONCLUSION: The use of sibutramine caused weight loss and a reduction in left ventricular mass in obese and hypertensive patients with no interference with blood pressure or with antihypertensive therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petiveria alliacea (Phytolaccaceae) is a bush widely distributed in South America including Brazil, where it is popularly known as "guiné", pipi", "tipi" or "erva-de-tipi". Brazilian folk medicine attributes to the hot water infusion of its roots or leaves the following pharmacologicalproperties: antipyretic, antispasmodic, abortifacient, antirrheumatic, diuretic, analgesic and sedative. The present study has evaluated the alleged effects of P. alliacea on central nervous system (CNS), particularly, the sedative and analgesic properties of root crude aqueous extract of this plant in mice and rats. This extract showed an antinociceptive effect in acetic acid - acetylcholine - and hypertonic saline - induced abdominal constrictions, but not in hot-plate and tail flick tests P. alliacea did not produce any CNS depressor effect. Thus its antinociceptive action in animals can be responsible by its poplar use as an analgesic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of Kudoa sciaenae cysts (Myxozoa), in terms of intensity and prevalence, in the somatic muscles of the sciaenid Stellifer minor, shows an apparent preference for the anterior body region, including the head. The observed preference seems to be a consequence of the differential distribution of muscle mass, in the defined area, because when density (cyst/g dry muscle), is considered, all the somatic areas, but not cephalic area, do no show significant differences in terms of mean intensity and prevalence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various types of "nuages" and "lamellae anulata" can be found during Dermatobia hominis spermatogenesis. In spermatogonia, the "nuages" occur as granules juxtaposed to the cytoplasmic face of the nuclear envelope or as cytoplasmic granules similar to glycogen granules. In spermatocytes, in addition to the "nuages", dense spherical bodies of approximately 1.0 µm in diameter are also observed. In the spermatids the "nuages" can be of the following types: perinuclear granules, spherical granules with diameters varying in length from 0.5 to 1.0 µm, granules similar to glycogen granules, granules with variable diameters which accumulate at the flagellum base forming the centriole adjunct, or remain in the cytoplasm. "Nuages" can also be observed in these cellular types as dense masses, without a definite outline and are common to animal germinal cells in general. The "lamellae anulata" on the other hand, are observed only in spermatocytes I and in early spermatids, being always immersed in electron-dense material of indefinite outline. In spermatids, the "lamellae anulata" are close to the nuclear envelope suggesting, in spite of opposing opinions, that these cells are envolved in the synthesis and transport of material from the nucleus to the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From January 1989 to April 1995, 465 specimens of Triatoma vitticeps were collected in the locality of Triunfo, 2nd District of Santa Maria Madalena municipal district, State of Rio de Janeiro. The bugs were found indoors by local residents with predominance of adults. The flight activity was high in hot months when the incidence in the domicile also increased. Two hundred and two bugs (111 alive and 91 dead) were examined for Trypanosoma cruzi infection. This was detected in 31 of the dead bugs (34%) and 88 (79%) of the live bugs examined. With a view to investigate the possible vertebrate hosts of the T. cruzi isolates, the blood of 122 mammals was examined through Giemsa-stained smears, hemocultures and xenodiagnosis. T. cruzi was detected in three specimens of Didelphis marsupialis and T. (M.) theileri was detected in one specimen of Bos taurus. The parasites were isolated from triatomine feces, xenoculture and hemoculture. No evidence of human infection was detected in 58 inhabitants examined, as evaluated by indirect imunofluorescence technique using T. cruzi epimastigotes as antigens. These results show that T. vitticeps is still a sylvatic species although nymphs have been found inside the domicile. Thus, an epidemiological vigilance is necessary to know the behaviour of this species following the continuous modifications promoted by the presence of man.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After 57 years of successful control of schistosomiasis in Venezuela, the prevalence and intensity of infection have declined. Approximately 80% of the individuals eliminate less than 100 eggs/g of stools, therefore morbidity is mild and the majority are asymptomatic. The sensitivity of Kato-Katz decreases to approximately 60%. Available serological methods for the detection of circulating antigens only reach a 70% of sensitivity. Tests based on the detection of antibodies by immunoenzymatic assays have been improved. The circumoval precipitine test has shown a high sensitivity (97%), specificity (100%), and correlation with oviposition, being considered the best confirmatory diagnostic test. Additionally to the classical immunoenzymatic assays, the development of the alkaline phosphatase immunoassay, allowed to reach a 100% specificity with an 89% sensitivity. Recently, we have developed a modified ELISA in which the soluble egg antigen is treated with sodium metaperiodate (SMP-ELISA) in order to eliminate the glycosilated epitopes responsible for the false positive reactions. The specificity and sensitivity reaches 97% and 99%, respectively. Synthetic peptides from the excretory-secretory enzymes, cathepsin B (Sm31) legumain (Sm32) and cathepsin D (Sm45), have been synthesized. The combination of two peptides derived from the Sm31 have been evaluated, reaching a sensitivity of 96% when analyzed independently and with a 100% specificity. Antibodies raised in rabbits against peptides derived from the Sm31 and Sm32 are currently evaluated in two different antigen-capture-based assays. The development of a simple, cheap and reliable test that correlates with parasite activity is a major goal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma cruzi, the protozoan responsible for Chagas disease, employs distinct strategies to invade mammalian host cells. In the present work we investigated the participation of calcium ions on the invasion process using primary cultures of embryonic mice cardiomyocytes which exhibit spontaneous contraction in vitro. Using Fura 2-AM we found that T. cruzi was able to induce a sustained increase in basal intracellular Ca2+ level in heart muscle cells (HMC), the response being associated or not with Ca2+ transient peaks. Assays performed with both Y and CL strains indicated that the changes in intracellular Ca2+ started after parasites contacted with the cardiomyocytes and the evoked response was higher than the Ca2+ signal associated to the spontaneous contractions. The possible role of the extracellular and intracellular Ca2+ levels on T. cruzi invasion process was evaluated using the extracellular Ca2+ chelator EGTA alone or in association with the calcium ionophore A23187. Significant dose dependent inhibition of the invasion levels were found when intracellular calcium release was prevented by the association of EGTA +A23187 in calcium free medium. Dose response experiments indicated that EGTA 2.5 mM to 5 mM decreased the invasion level by 15.2 to 35.1% while A23187 (0.5 µM) alone did not induce significant effects (17%); treatment of the cultures with the protease inhibitor leupeptin did not affect the endocytic index, thus arguing against the involvement of leupeptin sensitive proteases in the invasion of HMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compares smear, growth in Lowenstein-Jensen medium, and in-house polymerase chain reaction (PCR) techniques for the detection of Mycobacterium tuberculosis. A total of 72 specimens from 72 patients with clinical symptoms of tuberculosis, including 70 sputum and two bronchial aspirate samples, were tested in parallel by smear, culture, and in-house PCR techniques. From these, 48 (66.6%) were negative by the 3 methods, 2 (2.8%) were smear positive and negative by culture and in-house PCR, 11 (15.3%) were both smear and culture negative, and in-house PCR positive, 7 (9.7%) were positive by the 3 methods, 2 (2.8%) were positive by smear and culture, and negative by PCR, 2 (2.8%) were positive by culture and PCR, but smear negative. After the resolution of discrepancies in PCR results, the sensitivity and specificity for in-house PCR technique to M. tuberculosis relative to the culture, were 81.8% and 81.9%, respectively. These results confirm that this method, in-house PCR, may be a sensitive and specific technique for M. tuberculosis detection, occurring in both positive and negative smear and negative cultures.