57 resultados para Microbial genetics
Resumo:
Integrated crop-livestock systems (ICLs) are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR), Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC) and soil enzymatic activity in an ICL of soybean (summer) and Brachiaria ruziziensis (winter), with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI): 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively) and a no grazing (NG) control. The microbial characteristics analysed were MBC, microbial respiration (MR), metabolic quotient (qCO2), the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA) hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate) grazing intensity) contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10) contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height) during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20) and no grazing (NG) treatments.
Resumo:
Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.
Resumo:
The effects of genetics and environmental factors on isoflavone content of soybean (Glycine max L.) cultivars grown in different locations in Brazil in 1993/94 were evaluated. Seeds of different cultivars were analised by high performance liquid chromatography (HPLC). In Rio Grande do Sul (RS), Paraná (PR), and Mato Grosso do Sul (MS) States, a significant difference in the isoflavone total content average of the cultivars IAS 5 and FT-Abyara (163.9, 116.4 and 79.5 mg/100 g, respectively) was observed. In general, IAS 5 contained higher isoflavone than FT-Abyara. Cultivars IAS 5 and FT-Abyara grown at Vacaria, RS (28°30' S latitude) with temperature average of 19°C, had the highest isoflavone concentrations (218.7 and 163.8 mg/100 g, respectively). In Palotina, PR (24°27' S latitude), where temperature average was 24°C, the isoflavone concentrations were 105.9 and 86.8 mg/100 g, respectively. The lowest isoflavone contents were observed for FT-Estrela and FT-Cristalina, (27.6 and 46.5 mg/100 g, repectively) at Rondonópolis, MT (16°20' S latitude), where the temperature was 27°C.
Resumo:
Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6) or not (233/1), on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp.), near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.
Resumo:
The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.
Resumo:
The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.
Resumo:
The objective of this work was to assess the effect of two strains of Bacillus thuringiensis var. kurstaki on sorghum rhizosphere microorganisms. The strains were HD1, that produces the bioinsecticidal protein, and 407, that is a mutant non-producer. The strains do not influence microbial population, but reduce plant growth and improve mycorrhizal colonization and free living fixing N2 community.
Resumo:
The aim of this work was to evaluate whether terrestrial model ecosystems (TMEs) are a useful tool for the study of the effects of litter quality, soil invertebrates and mineral fertilizer on litter decomposition and plant growth under controlled conditions in the tropics. Forty-eight intact soil cores (17.5-cm diameter, 30-cm length) were taken out from an abandoned rubber plantation on Ferralsol soil (Latossolo Amarelo) in Central Amazonia, Brazil, and kept at 28ºC in the laboratory during four months. Leaf litter of either Hevea pauciflora (rubber tree), Flemingia macrophylla (a shrubby legume) or Brachiaria decumbens (a pasture grass) was put on top of each TME. Five specimens of either Pontoscolex corethrurus or Eisenia fetida (earthworms), Porcellionides pruinosus or Circoniscus ornatus (woodlice), and Trigoniulus corallinus (millipedes) were then added to the TMEs. Leaf litter type significantly affected litter consumption, soil microbial biomass and nitrate concentration in the leachate of all TMEs, but had no measurable effect on the shoot biomass of rice seedlings planted in top soil taken from the TMEs. Feeding rates measured with bait lamina were significantly higher in TMEs with the earthworm P. corethrurus and the woodlouse C. ornatus. TMEs are an appropriate tool to assess trophic interactions in tropical soil ecossistems under controlled laboratory conditions.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.
Resumo:
Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke) Barneby (paricá) occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF) and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL) of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800). Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05). Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.
Resumo:
Soil is a very heterogeneous environment that allows the establishment of wide range of microorganisms populations, whose balance is affected by biotic and abiotic factors. This study has aimed to assess the effect of doses of mesotrione and fluazifop-p-butyl herbicides and two assessment periods on microbial activity and biomass of soil cultivated with cassava Cacau-UFV cultivar, besides the root colonization by arbuscular mycorrhizal fungi. Two trials were conducted in a protected environment where was realized post-emergence application of mesotrione in the doses of 72, 108, 144 and 216 g ha-1 and fluazifop-p-butyl in the doses of 100, 150, 200 and 300 g ha-1, besides a control without application. Soil samples were collected for determination of soil respiratory rate (RR), microbial biomass carbon (MBC), metabolic quotient (qCO2), and colonization of roots by arbuscular mycorrhizal fungi at the 30 and 60 days after applications (DAA) of the herbicides. Fluazifop-p-butyl increased the RR, MBC and the percentage of cassava roots colonized by mycorrhizal fungi in the assessment performed at 60 DAA. The larger effects of mesotrione on soil microbial indicators were up to 30 DAA, being the changes minimized at 60 DAA. It is concluded that the herbicides alter the soil microbial indicators, with effects dependent of the product, of dose applied and also of the period of assessment.
Resumo:
The aims of this study were to investigate the mating system of a fragmented population of the dioecious tropical tree Myracrodruon urundeuva Allemão, using five microsatellite loci and the mixed mating and correlated mating models. The study was conducted in the Estação Ecológica de Paulo de Farias (436 ha), where the population occupies about 142 ha. The mating system was estimated using 514 open-pollinated offspring, collected from 30 seed-trees. Estimates of the multilocus outcrossing rate confirm that the species is dioecious (t m = 1.0). Low levels of mating among relatives were detected in the population (1 - t s = 0.020). The estimate of paternity correlation (r p(m)) indicated that offsprings were composed of mixtures of half-sibs and full-sibs, with the latter occurring at a low frequency (average of 0.148). The estimated coancestry coefficient within families (Θ = 0.147) was larger and the effective population size (Ne(v)) was lower (Ne(v) = 2.98) than expected in progenies from panmictic populations (Θ = 0.125, Ne(v) = 4, respectively). In terms of conservation, the results indicate that to retain an effective population size of 150, is necessary to collect seeds from at least 50 seed-trees.
Resumo:
Six wheat genotypes and their F1 and F2 generations were exposed to the action of Helminthosporium sativum culture filtrates to examine the genetics of hexaploid wheat resistance. The objective was to improve the efficiency of breeding programs by identifying the action and number of genes involved in the resistance. The varied response of the tested genotypes to the culture filtrates allowed division of the genotypes into four groups: resistant, moderately resistant, moderately susceptible and susceptible. This variability was detected in the progeny, suggesting that the parents have distinct genetic constitutions. Additive gene action predominated and genetic gain was shown to be possible through selection. The genetic control of the resistance trait seems to be complex because of the presence of gene interaction and the difficulty of eliminating the environmental effects. The inheritance seems to be oligogenic