79 resultados para Methyl orange
Resumo:
In order to evaluate the formation of adventitious buds and in vitro regeneration of sour orange plants (Citrus aurantium L.) two organogenesis-inducing experiments were conducted. In the first experiment, the induction and in vitro regeneration of adventitious buds were tested on epicotyl and internodal segments under the influence of BAP or KIN associated with NAA. The second experiment evaluated the in vitro regeneration of sour orange plants related to different explant types (epicotyls segments, internodal segments of in vitro germinated plantlets and internodal segments of greenhouse cultivated plants). Data collected on both experiments included the percentage of responsive explants (explants that formed buds), and the number of buds per explant. The addition of BAP showed the best organogenic response. In vitro germinated epicotyl segments and internodal segments are recommended as explants for sour orange in vitro organogenesis. Rooting of regenerated shoots was achieved without the need of auxin in the medium.
Resumo:
Orange fruits from two seasons, in April and August 2006 representing late 2005 and early 2006 harvests respectively were cured in hot air at 36-37(0)C to 1%, 3%, 5% and 7% weight loss before storage at 28(0)C and 86% relative humidity (RH). The fruits were observed for incidence of decay, further weight loss, juice content, firmness or softening of the peel, total soluble solids (TSS), pH, titratable acidity, and colour during storage. Curing reduced the incidence of decay. All control fruits were rotten by day 21 in August harvest while 22.5% of the control was rotten by day 56 in the April harvest. Storage life was extended beyond 56 days in fruits cured with 1, 3, 5 and 7% in April harvest as there was no decay throughout, while decay incidence in August harvest was 88.9, 61.1, 22.2 and 31.3% in 1, 3, 5 and 7% respectively. Penicillium digitatum, Phytophthora sp., Alternaria citri and Collectotrichum gloeosporioides were among decay causing moulds detected. Control fruits lost more weight during storage than cured fruits did. Fruit rind hardening was more noticed in the control and those cured to 1% weight loss, especially from the April harvest. It was insignificant in other treatments in both trials. Titratable acidity, pH, juice content and TSS were not affected by the treatment. Colour change to yellow was however retarded by curing. Curing to 5% weight loss was best for decay control and quality retention.
Resumo:
The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.
Resumo:
The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.
Resumo:
Brazil is the world's largest producer of oranges and uses more than 70% of the harvested fruits in the production of juices. The amount of processed orange is growing about 10% per year, confirming the trend of the Brazilian citrus for juice production. This research aimed to investigate the Brazilian orange juice production chain from 2005 to 2009. Data from the amount of frozen juice produced and exported, international price of orange juice, and intermediate transactions were assessed in order to make possible selection of all interveners involved in the chain. The study using the Social Network Analysis (SNA) showed that the densest relationships in the network are from exporters to importers and from orange growers to the orange processing industry. No difference was found in the values of the network geodesic distance or the clustering coefficients from 2005 to 2009. The degree of centrality increased steadily throughout the years indicating that the processing industry attempts to minimize the risks by centralizing the actions. A decrease in export of orange juice from 2007 (2.07 10(6) t) to 2008 (2.05 10(6) t) was found, probably due to the world's financial crisis with recovery in 2009. Since 2004, there has been an increase of nearly 10% per year in the market preference of concentrate juice (OFCJ) when compared to the "not from concentrated" juice (NFC). Nowadays the NFC market represents nearly 50% of all Brazilian export which impacted in the logistic distribution and transportation issues.
Resumo:
ABSTRACT The flavor quality of citrus fruits is largely determined by the sugar-acid ratio, but it remains uncertain how sugar- and/or acid-metabolizing enzymes regulate the sugar-acid ratio of navel oranges and further affect the fruit quality. In the present study, Robertson navel oranges (Citrus sinesis Osb.) were collected from six representative habitats in three eco-regions of Sichuan, China. The changes in the sugar-acid ratio and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), cytosolic cio-aconitase (ACO), and isocitrate dehydrogenase (IDH) were examined in navel oranges during fruit development. The results indicated that the sugar-acid ratio of fruits in different eco-regions changed significantly from 150 days after full bloom. The SPS and cytosolic ACO fruit activities had minor changes among different ecoregions throughout the experimental periods, whereas the activities of SS and IDH changed significantly in fruits among three eco-regions. Furthermore, the sugar-acid ratio and the activities of SS in the synthetic direction and IDH were the highest in south subtropics and the lowest in north mid-subtropics, probably due to the effects of climate conditions and/or other relevant eco-factors. It demonstrated that SS in the synthetic direction and IDH were of greater importance in regulating the sugar-acid ratio of navel oranges in different eco-regions, which provided new insights into the factors that determine the flavor quality of navel oranges and valuable data for guiding relevant agricultural practices.
Resumo:
The decolorization of acid orange 7 azo dye by photolysis and photocatalysis by ZnO was investigated in the presence of oxidants such as NaClO3, NaBrO3, NaIO4, and K2S2O8 in an open reactor at 30 ºC. The decolorization was relatively fast at lower oxidants concentrations and slow rate at larger concentrations, except for persulfate in the photocatalysis. Concerning photolysis the rate constant enhanced gradually, except for chlorate, outreaching the obtained values by photocatalysis, at higher concentrations. The air saturation decreased the rate constant in both processes and indicated that the azo dye can be decolorized without dissolved oxygen in persulfate medium.
Resumo:
Ru-Sn/Al2O3 catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity.
Resumo:
Two sensitive and simple spectrophotmetric methods were developed for determination of Atazanavir Sulfate in capsule dosage form. The first method was based on the oxidative coupling of ATV with 3-Methyl Benzothiazolin-2-one hydrazone (MBTH). The resulting green product had Λmax of 627.3 nm and was stable for 2 h. The second method was based on the reaction between diazotized drug with N-(1-napthyl)ethylenediamine dihydrochloride (NEDA) in neutral medium to yield yellowish orange product which had Λmax of 517.1 nm. The product was stable for 4 h. Both methods were highly reproducible and had been applied to pharmaceutical preparations.
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.
Resumo:
This paper describes the synthesis and characterization of layered barium, calcium and strontium benzoates and evaluates the potential of these materials as catalysts in the synthesis of methyl benzoate. The methyl esterification of benzoic acid was investigated, where the effects of temperature, alcohol:acid molar ratio and amount of catalyst were evaluated. Ester conversions of 65 to 70% were achieved for all the catalysts under the best reaction conditions. The possibility of recycling these metallic benzoates was also demonstrated, evidenced by unaltered catalytic activity for three consecutive reaction cycles.
Resumo:
(E)-2-{[(2-Aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butyl-phenol ( 3: ), a ligand containing an intramolecular hydrogen bond, was prepared according to a previous literature report, with modifications, and was characterized by UV-vis, FTIR, ¹H-NMR, 13C-NMR, HHCOSY, TOCSY and cyclic voltammetry. Computational analyses at the level of DFT and TD-DFT were performed to study its electronic and molecular structures. The results of these analyses elucidated the behaviors of the UV-vis and electrochemical data. Analysis of the transitions in the computed spectrum showed that the most important band is primarily composed of a HOMO→LUMO transition, designated as an intraligand (IL) charge transfer.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
A fast gas chromatography with a flame ionisation detector (GC-FID) method for the simultaneous analysis of methyl palmitate (C16:0), stearate (C18:0), oleate (C18:1), linoleate (C18:2) and linolenate (C18:3) in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0) is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.
Natural colonization of leaves of 'Pêra' sweet orange and related varieties by Guignardia citricarpa
Resumo:
The purpose of this research was to evaluate the differences in the colonization and production of structures in the leaves of 'Pêra' sweet orange (Citrus sinensis) clones and related varieties by Guignardia citricarpa. The natural colonization and the production of reproductive structures in the leaves and in vitro of ten 'Pêra' sweet orange was quantified in the following clones: Bianchi, Dibbern C.V., EEL, IAC 2000, Olímpia 15161, Premunizada 1212, Premunizada 1743/82, R. Gullo 1569/244, R. Gullo 1570/246 and Vimusa; and in five related varieties: Redonda C.N, Ovale 968, Ovale San Lio 969, Lamb Summer and Corsa Tardia. The quantification of the colonization density of G. citricarpa in the leaves was obtained through isolation. Incidence and colonization density (cm²) were calculated for each clone. The production of reproductive structures was accomplished through the moistening and drying process of the leaves. The incidence (percentage of affected leaves) and the leaf surface percentage occupied by the reproductive fungus structures were quantified. The in vitro production of reproductive structures was accomplished in water-agar medium. The number of immature and total reproductive fungus structures (cm²), and the percentage of picnidia with liberation of spores were quantified. Significant differences were not observed among clones related to the colonization of the leaves. But there were differences in the induction experiments, i.e., in the leaf surface percentage occupied by the reproductive fungus structures and the in vitro production of reprodutive fungus structures.